System Modelling using Event-B

Neeraj Kumar Singh

McMaster Centre for Software Certification

March 25, 2014

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014

0 Model Development

© Machines and Contexts

© Event
Q@ Action

© Proof Obligation (POs)
@ Refinement
@ Tools and Books

@ Case Studies

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 2 /34

Model Development with Event-B

@ is designed by J.-R. Abrial in 1988.

@ is not a programming language.
@ notations are based-on set-theory and first-order logic.
°

notations are used to develop the mathematical models of discrete
transition systems (system behaviour).

supports refinement based development.

@ models can be developed using the Rodin Platform.

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 3 /34

Modelling Systems

© Problem Understanding

@ Identifying and organizing the requirements and properties
© To specify a very abstract model

@ Adding new requirements using small refinement steps

@ Stop the refinement if model is enough concrete

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 4 /34

Set-theoretical Notations

Name Syntax Definition
Binary relation st (P)(s x t)
Composition of relations | r ; {x,y|x€a NyebA
Jz(z€c AN x,z€n N z,y €En}
Inverse relation r—1 {x,y | xeP(a) AN yeD(b) N a— ber)}
Domain dom(r) {alaes A Tb(bet N a—ber)}
Range ran(r) dom(r—1)
Identity id(s) {x,y|x€s ANyes A x=y}
Restriction sar id(s);r
Co-restriction res r;id(s)
Anti-restriction s<ar (dom(r)y —s)<r
Anti-co-restriction res rt> (ran(r) —s)
Image riw] ran(w < r)
Overriding q<r (dom(r)<q)Ur
Partial function s+t {riresst A (r 1 r) Cid(t)}

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 5 /34

/

Machines and Contexts

Contexts

Contexts are used to formalize the static structure of a discrete system
(constants and axioms)

Machines

| A\

Machines are used to formalize the dynamic structure of a discrete system
(variables, invariants, and events).

\

Machine Context
Variable o | Carrier Sets
Invariant P Constant
Event Axiom
Theorem N Theorem
N N
N
A N N A
1 \A I
Other MACHINES |- - - - - | Other CONTEXTS

Neeraj Kumar Singh (McMaster University) Modelling in Event-B

March 25, 2014 6 /34

context

< context identifier >
extendes

< context identifier >
sets

< set identifier >
constants

< constant identifier >
axioms

< label >:< predicate >
theorems

< label >:< predicate >
end

context
cl
sets
S
constants
X
y
axioms
axml: x ¢ N
axm2: y € l.x — S
theorems
thml: x € N1
end

Neeraj Kumar Singh (McMaster University)

Modelling in Event-B

March 25

, 2014

Context Structure

7/ 34

Machine Structure

machine

< machine identifier >

refines

< machine identifier > machine
sees ml

< context identifier > sees
variables cl

< variable identifier > variables
invariants [

< label >:< predicate > invariants
theorems axml: /€ 1l.x
< label >:< predicate > events
events

< initialisation >< evn 1...evn n > end
variant

< variant >

(McMaster University Modelling in Event-B March 25, 2014 8 /34

Neeraj Kumar Singh

Event Structure

< event identifier >=

status

{ordinary, convergent, anticipated } Event Update
refines refines

< event identifier > Update

any any

< parameter identifier > a

where or when where

< label >:< predicate > grdl: a € 1..x
with then

< label >:< witness > actl: i :=a
then end

< label >:< action >

end

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 9 /34

Event: E Before-After Predicate
BEGIN x : |P(x,x") END P(x,x")

WHEN G(x) THEN x : |P(x, x") END G(x) A P(x,x")

ANY t WHERE G(t,x) THEN x : |P(t,x,x’) END | 3t.(G(t,x) A P(t,x,x"))

Event: E Guard: grd(E)
BEGIN x : [P(x, x') END TRUE

WHEN G(x) THEN x : |P(x,x") END G(x)

ANY t WHERE G(t,x) THEN x : |P(t,x,x") END | 3t.G(t, x)

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 10 / 34

An action modifies one or more state variables. There are two types of
actions: deterministic and non-deterministic

Deterministic Action

x:=p+q
y := max(p, q)

v

Non-Deterministic Action

x| = ptg
Xy X >xANy <X
x:€{p+1,q+3,r+4}
x:|x'€e{p+1,q+3,r+4}

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 11 /34

Proof Obligation

The POs are automatically generated by a Rodin Platform tool called the
Proof Obligation Generator. A list of POs is given as follows:

o Well-definedness (WD)

@ Invariant preservation (INV)

e Non-deterministic action feasibility (FIS)
o Guard strengthening(GRD)

e Simulation (SIM)

e Numeric variant (NAT)

(]

Proving theorems (THM)

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 12 / 34

Proof Obligations

INV1 A(s,c) N G(x,s,c,v) A BA(e)(x,s,c,v,v’)
}_

I(s,c,v')
INV2 A(s,c) N(s,c,v) A G(x,s,c,v) A BA(e)(x,s,c,v,v)
}_

I(s,c,v')
FIS A(s,c) AN(s,c,v) A G(x,s,c,v)
}_

Iv/.BA(e)(x,s, c,v, V')
GRD A(s,c) Al(s,c,v) ANJ(s,c,v,w) A H(y,s,c,w) A Wit(x,y,s, c,w)
}_
grd(x,s, c,v)
DEAD | A(s,c)Al(s,c,v)
}_

(grd(g1) V ... V grd(gn))

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 13 / 34

SEES
My —— Gy

A y
@ To add more details (like superposition). REFINES| EXTENDS

@ To introduce a set of new events, and

safety properties. A‘/h

SEES
NN
@ To prove that the concrete behaviors are

REFINES | EXTENDS
abstract ones.

@ Each new event refines SKIP. ... SEES_ .

@ No deadlock
REFINES | EXTENDS

SEES
M, — (C,

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014

Key Steps of the Refinement

abstract level I(x) —— I(x) machine M : x, I(x)
REFINES]
concrete level J(x,y) . J(X',y") machine N :y,J(x,y)

@ An event f simulates an event e.

o f modifies y

@ e modifies x

o If e preserves /(x) and f simulates e, then f preserves /(x)

1(x) A J(x,y) A BA(F)(y,y") = 3Ix'.(BA(e)(x,x") A J(X', y")) J

The invariant in the refinement model is preserved by the refined event
and the activation of the refined event triggers the corresponding abstract

event.
15 / 34

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014

Proof Obligations for Refinement

REF1 | InitC(y)

=

Ix.(InitA(x) A J(x,y)
REF2 | I(x) A J(x,y) A BAC(y,y')

;(.(BAA(X,X’) ANJ(xX',y")

REF3 | I(x) A J(x,y) A BAC(y,y")

=

J(x,y")

REF3 | I(x) AJ(x,y) A (Gi(x) V ...V Gp(x))
=

Hi(y) Vv ... v Hi(y)

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 16 / 34

Tools and Books

RODIN Platform: http://www.event-b.org/platform.html
Event B: http://www.event-b.org

ProB :http://www.stups.uni-duesseldorf.de/ProB
EB2ALL Toolset: http://eb2all.loria.fr

Neeraj Kumar Singh

Modeling

in Event-B Using Event-B
System and for Critical

ﬁgi\z:gmg Device Software
NHEUS

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 17 / 34

Cardiac Pacemaker

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 18 / 34

Heart System

Sinoatrial

(SA) node ,
Left atria

Left ventricle

Atrioventriclular
(AV) node

Right ventricle

Neeraj Kumar Sin (McMaster University) Modelling in Event-B March 25, 2014 19 / 34

Electrical Signal of the Heart

Atrioventricular
Sinoatrial (AV)
(SA) Node
Node

Bundle of His

Right Atrium /4~ Left Atrium

74
¢
'.

Left Bundle
Branch

fe—P-R —> git—— ST —=
)) i interval interval
Right Ventricle i QRS
Right Bundle 6 vioniricle interval

Branch

Neeraj Kumar Si (McMaster University) Modelling in Event-B March 25, 2014

The Cardiac Pacemaker

The Cardiac Pacemaker

AT f
Pacemaker BS 49 %

A pacemaker is an electronic device
implanted in the body to regulate the
abnormal heart rhythm (bradycardia).
Type of pacemakers:1,2 and 3-Electrodes.

Operating Modes : NASPE/BPEG Generic Code

Category | Chambers Chambers Response to | Rate Modulation
Paced Sensed Sensing

Letters O-None O-None O-None R-Rate Modulation
A-Atrium A-Atrium T-Triggered
V-Ventricle V-Ventricle I-Inhibited
D-Dual(A+V) | D-Dual(A+V) | D-Dual(T+I)

i.,e. AOO, VOO, AAI, AAT, VVI, VVT, AATR,VVTR, AOOR etc. ..
Periodic stimuli : (AOO, VOO and DOO)
Aperiodic stimuli : (AAl, VVI, DDD, DDI, etc.)

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 21/ 34

The Cardiac Pacemaker

@ Simple Pacemaker Model

@ Closed-loop Model

Pacemaker
Actuator

Pacemaker
Sensor

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014

The Cardiac Pacemaker

Design Patterns

@ Action Reaction Patterns

@ Real Time Patterns

Development of Cardiac Pacemaker

@ Formalization of 1 and 2-electrode cardiac pacemaker

PACEMAKER

One-Electrode
Pacemaker
{ Atrial }

Two-Electrode
Pacemaker
Both
Chambers

Chambers [Ventricular }

Abstract Model

First Refinement
(Threshold)

Second Refinement
(Hysteresis)

Third Refinement
(Rate Modulation)

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014

Timing Cycles

TARP

[

LRI

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 24 / 34

The DDD Pacing Scenarios

(A) Atrial Ventricle
Pace Pace

AT
[VAT]
[)]
Ventricle -
(B) Atrial Sense
Pace .
“ime
Atrial ventricle

Q) Sense pace .

Ry .
H Ventricle
Atrial || Sense
Sense’ || 1 .
© P AL
| s . e
Q : :

Neeraj Kumar Si (McMaster University) Modelling in Event-B

DDD Pacing Modes

AV Pacing Recorded: 9.21:26am 25 mm/sec, 8 mmmV End
‘ oI 20 < OO [P9 O
‘ Ll A L Bl A

o -, ‘E_—I — r

1\ - | | HH |
| H FE P s P | 11 ,__L;

Neeraj Kumar Singh (McMaster University)

Modelling in Event-B

March 25, 2014 26 / 34

DDD Pacing Modes

AN Paciny Recorded: 9:21:28 am 25 mmisec, B mmimV End
SoTer TR BT Tee

axml : LRL € 30 .. 175

axm2 : URL € 50 .. 175

axm3 : URI € Ny A URI = 60000/ URL
axm4 : LRI € Ny A LRI = 60000/ LRL
axmb : status = {ON, OFF}

axmb : FixedAV € 70 .. 300

axm7 : ARP € 150 .. 500

axm8 : VRP € 150 .. 500

axm9 : PVARP € 150 .. 500

axml0 : V_Blank € 30 .. 60

Neeraj Kumar Sin (McMaster University) Modelling in Event-B March 25, 2014 26 / 34

DDD Pacing Modes

AV Pacing Recorded: 9.21:26am 25 mm/sec, 8 mmmV
DT) @& ®OT H|
e s | s
| P |
I-J\ | A |] B hn I"\l}
— = \—
HT w —
i 71 5 e W O i
invl : PM_Actuator_A € status
inv2 : PM_Sensor_A € status
invb : Pace_Int € URI .. LRI
axml : LRL € 30 .. 175 inv6 : sp € 1.. Pace_Int
axm2 : URL € 50 .. 175 inv7 : last_sp > PVARP A last_sp < Pace_Int
axm3 : URI € Ny A URI = 60000/ URL
axm4 : LRI € Ny A LRI = 60000/LRL invll : sp < VRP A AV _Count_STATE = FALSE=-
axmb : status = {ON, OFF} PM_Actuator_V = OFF A PM_Sensor A = OFFA
axmb : FixedAV € 70 .. 300 PM_Sensor_.V = OFF N PM_Actuator A = OFF
axm7 : ARP € 150 .. 500
axm8 : VRP € 150 .. 500 inv12 : Pace_Int_flag = FALSE N PM_Actuator.V = ON=>
axm9 : PVARP € 150 .. 500 sp = Pace_Int \/ (sp < Pace_IntA
axml0 : V_Blank € 30 .. 60 AV _Count > V_Blank N\ AV _Count > FixedAV)
inv13 : Pace_Int_flag = FALSE N PM_Actuator A = ON=-
(sp > Pace_Int — FixedAV)

Neeraj Kumar Sin (McMaster University) Modelling in Event-B March 25, 2014

DDD Pacing Modes

EVENT Actuator OFF_V
WHEN
grdl : PM_Actuator.V = ON
grd2 : (sp = Pace_Int)
\
(sp < Pace_Int A AV _Count > V_Blank N
AV _Count > FixedAV
grd3 : AV_Count_STATE = TRUE
grd4 : PM_Actuator A = OFF
grd5 : PM_Sensor_ A = OFF
THEN
actl : PM_Actuator_V := OFF
act2 : AV_Count := 0
act3 : AV_Count STATE := FALSE

EVENT Actuator_ ON_V
WHEN
grdl : PM_Actuator.V = OFF
grd2 : (sp = Pace_Int)
\
(sp < Pace_Int A AV_Count > V _Blank A
AV _Count > FixedAV)
grd3 : sp > VRP A sp > PVARP
THEN
actl : PM_Actuator.V := ON
act2 : last_sp := sp

END act4 : PM_Sensor_.V := OFF
acts 1 sp:=1
END

EVENT tic
WHEN
grdl : (sp < VRP)
\
(sp > VRP A sp < Pace_Int — FixedAV A
PM_Sensor A = ON N PM_Sensor.V = ON
THEN
actl : sp:=sp+1
END

Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014

DDD Pacing Modes

EVENT Sensor.ON_V
WHEN
grdl : PM_Sensor_V = OFF
grd2 : (sp > VRP A sp < Pace_Int — FixedAV A\ PM_Sensor_ A = ON)

Vv
(sp > Pace_Int — FixedAV A AV _Count_STATE = TRUE)
grd4 : PM_Actuator A = OFF
THEN
actl : PM_Sensor_V := ON
END

EVENT Sensor_.OFF_V
WHEN
grdl : PM_Sensor_V = ON
grd2 : (sp < Pace_Int — FixedAV)
"
(sp > Pace_Int — FixedAV A sp < Pace_Int)
grd4 : PM_Actuator.V = OFF
grd5 : PM_Actuator A = OFF
grd6 : sp > VRP A sp > PVARP
THEN

actl : PM_Sensor_V := OFF

act2 : last_sp := sp

act3:sp:=1

actb : PM_Sensor_A := OFF

act6 : AV_Count := 0

act? : AV_Count _STATE := FALSE
END

Neeraj Kumar Sin (McMaster University) Modelling in Event-B March 25, 2014

First Refinement (Threshold): Sensor Activity in DDD

AVI PVARP TARP

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 29 / 34

First Refinement (Threshold): Sensor Activity in DDD

invl: ThrlA € Ny A Thr.V € Ny

inv2 : Pace_Int_flag = FALSE N sp > VRP A sp < Pace_Int — FixedAV = PM_Sensor_.V = ON

Pace_Int_flag = FALSE A sp > Pace_Int — FixedAV A sp < Pace_Int N\ AV _Count_STATE = TRUE=

inv3 :
PM_Sensor A = OFF N PM_Sensor.V = ON A PM_Actuator A = OFF

EVENT Thr_Value A
ANY
Thr_A_val

WHERE
grdl : PM_Sensor A = ON
grd2 : Thr_A.val € N
grd3 : Thr_A_State = TRUE
grd5 Thr A < STA_-THR_A
grd6 (sp > VRP A sp < Pace_Int — FixedAV)

THEN
actl : Thr A := Thr_A_val
act2 : Thr_A_State := FALSE

END

March 25, 2014 30/ 34

Neeraj Kumar Sin (McMaster University) Modelling in Event-B

Second Refine . Hysteresis

What is Hysteresis?

EVENT Hyt_Pace_Updating Refines Change_Pace_Int
ANY
Hyt_Pace_Int
WHERE
grdl : Pace_Int_flag = TRUE
grd2 : Hyt_Pace_Int_flag = TRUE
grd3 : Hyt_Pace_Int € Pace_Int .. LRI
THEN
actl : Pace_Int := Hyt_Pace_Int
act2 : Hyt_Pace_Int_flag := FALSE
act3 : HYT _State := TRUE
END

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 31/ 34

Third Refin : Rate Modulation

What is Rate Modulation?

Increase_Interval Refines Change_Pace_Int
WHEN
grdl : grdl : Pace_Int_flag = TRUE
grdl : acler_sensed > threshold
grdl : HYT _State = FALSE
THEN
actl : Pace_Int := 60000/ MSR
actl : acler_sensed_flag := TRUE
END

inv3 : acler_sensed < acc_thr A acler_sensed_flag = TRUE =- Pace_Int = 60000/LRL
inv4 : acler_sensed > acc_thr N acler_sensed_flag = TRUE = Pace_Int = 60000/ MSR

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 32 /34

Validation, Proof Statistics and Code Generation

Used to check an expected behavior of each operating mode.

Proof Statistics

Model Total number Automatic Interactive
‘ of POs Proof ‘ Proof
One-electrode pacemaker
Abstract Model 203 199(98%) 4(2%)
First Refinement 48 44(91%) 4(9%)
Second Refinement 12 8(66%) 4(34%)
Third Refinement 105 99(94%) 6(6%)
Two-electrode pacemaker
Abstract Model 204 195(95%) 9(5%)
First Refinement 234 223(95%) 11(5%)
Second Refinement 3 3(100%) 0(0%)
Third Refinement 83 74(89%) 9(11%)
Total 892 845(94%) 47(6%)

Code Generation using EB2ALL.

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 33 /34

j Kumar Si (McMaster University) Modelling in Event-B March 25, 2014 34 /34

	Model Development
	Machines and Contexts
	Event
	Action
	Proof Obligation (POs)
	Refinement
	Tools and Books
	Case Studies

