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Model Development with Event-B

Event-B

is designed by J.-R. Abrial in 1988.

is not a programming language.

notations are based-on set-theory and first-order logic.

notations are used to develop the mathematical models of discrete
transition systems (system behaviour).

supports refinement based development.

models can be developed using the Rodin Platform.
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Modelling Systems

1 Problem Understanding

2 Identifying and organizing the requirements and properties

3 To specify a very abstract model

4 Adding new requirements using small refinement steps

5 Stop the refinement if model is enough concrete
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Set-theoretical Notations

Name Syntax Definition
Binary relation s↔ t (P)(s × t)

Composition of relations r1 ; r2 {x , y | x ∈ a ∧ y ∈ b ∧
∃z.(z ∈ c ∧ x , z ∈ r1 ∧ z, y ∈ r2}

Inverse relation r−1 {x , y | x ∈ P(a) ∧ y ∈ D(b) ∧ a 7→ b ∈ r)}
Domain dom(r) {a | a ∈ s ∧ ∃b.(b ∈ t ∧ a 7→ b ∈ r)}
Range ran(r) dom(r−1)

Identity id(s) {x , y | x ∈ s ∧ y ∈ s ∧ x = y}
Restriction s C r id(s); r

Co-restriction r B s r ; id(s)
Anti-restriction s C− r (dom(r)− s) C r

Anti-co-restriction r B− s r B (ran(r)− s)
Image r [w ] ran(w C r)

Overriding q C− r (dom(r) C q) ∪ r
Partial function s 7→ t {r | r ∈ s↔ t ∧ (r−1; r) ⊆ id(t)}
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Machines and Contexts

Contexts

Contexts are used to formalize the static structure of a discrete system
(constants and axioms)

Machines

Machines are used to formalize the dynamic structure of a discrete system
(variables, invariants, and events).

Machine

Variable
Invariant

Event
Theorem

Context

Carrier Sets
Constant

Axiom
Theorem

Other MACHINES Other CONTEXTS
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Context Structure

context
< context identifier >
extendes
< context identifier >
sets
< set identifier >
constants
< constant identifier >
axioms
< label >:< predicate >
theorems
< label >:< predicate >
end

context
c1

sets
S

constants
x
y

axioms
axm1: x ∈ N
axm2: y ∈ 1..x → S

theorems
thm1: x ∈ N1

end
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Machine Structure

machine
< machine identifier >
refines
< machine identifier >
sees
< context identifier >
variables
< variable identifier >
invariants
< label >:< predicate >
theorems
< label >:< predicate >
events
< initialisation >< evn 1...evn n >
variant
< variant >
end

machine
m1

sees
c1

variables
i

invariants
axm1: i ∈ 1..x

events
...
end
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Event Structure

< event identifier >,
status
{ordinary , convergent, anticipated}
refines
< event identifier >
any
< parameter identifier >
where or when
< label >:< predicate >
with
< label >:< witness >
then
< label >:< action >
end

Event Update
refines

Update
any

a
where

grd1: a ∈ 1..x
then

act1: i := a
end

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 9 / 34



Events

Event: E Before-After Predicate
BEGIN x : |P(x , x ′) END P(x , x ′)

WHEN G(x) THEN x : |P(x , x ′) END G(x) ∧ P(x , x ′)

ANY t WHERE G(t, x) THEN x : |P(t, x , x ′) END ∃t.(G(t, x) ∧ P(t, x , x ′))

Event: E Guard: grd(E)
BEGIN x : |P(x , x ′) END TRUE

WHEN G(x) THEN x : |P(x , x ′) END G(x)

ANY t WHERE G(t, x) THEN x : |P(t, x , x ′) END ∃t.G(t, x)

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 10 / 34



Actions

Actions

An action modifies one or more state variables. There are two types of
actions: deterministic and non-deterministic

Deterministic Action
x := p + q
y := max(p, q)

Non-Deterministic Action

x : |x ′ = p + q
x , y : |x ′ > x ∧ y ′ < x ′

x :∈ {p + 1, q + 3, r + 4}
x : |x ′ ∈ {p + 1, q + 3, r + 4}
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Proof Obligation

The POs are automatically generated by a Rodin Platform tool called the
Proof Obligation Generator. A list of POs is given as follows:

Well-definedness (WD)

Invariant preservation (INV)

Non-deterministic action feasibility (FIS)

Guard strengthening(GRD)

Simulation (SIM)

Numeric variant (NAT)

Proving theorems (THM)
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Proof Obligations

INV1 A(s, c) ∧ G(x , s, c, v) ∧ BA(e)(x , s, c, v , v ′)
`
I (s, c, v ′)

INV2 A(s, c) ∧ I (s, c, v) ∧ G(x , s, c, v) ∧ BA(e)(x , s, c, v , v ′)
`
I (s, c, v ′)

FIS A(s, c) ∧ I (s, c, v) ∧ G(x , s, c, v)
`
∃v ′.BA(e)(x , s, c, v , v ′)

GRD A(s, c) ∧ I (s, c, v) ∧ J(s, c, v ,w) ∧ H(y , s, c,w) ∧Wit(x , y , s, c,w)
`
grd(x , s, c, v)

DEAD A(s, c) ∧ I (s, c, v)
`
(grd(g1) ∨ ... ∨ grd(gn))
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Refinement

To add more details (like superposition).

To introduce a set of new events, and
safety properties.

To prove that the concrete behaviors are
abstract ones.

Each new event refines SKIP.

No deadlock

M0 C0

M1 C1

. . . . . .

Mn Cn

-SEES

6
REFINES

-SEES

6
EXTENDS

6
REFINES

-SEES

6
EXTENDS

6
REFINES

-SEES

6
EXTENDS
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Key Steps of the Refinement

abstract level I (x) I (x ′) machine M : x , I (x)

concrete level J(x , y) J(x ′, y ′) machine N : y , J(x , y)

-e

-f

6
REFINES

An event f simulates an event e.

f modifies y

e modifies x

If e preserves I (x) and f simulates e, then f preserves I (x)

I (x) ∧ J(x , y) ∧ BA(f )(y , y ′) ⇒∃x ′.(BA(e)(x , x ′) ∧ J(x ′, y ′))

The invariant in the refinement model is preserved by the refined event
and the activation of the refined event triggers the corresponding abstract
event.
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Proof Obligations for Refinement

REF1 InitC(y)
⇒
∃x .(InitA(x) ∧ J(x , y)

REF2 I (x) ∧ J(x , y) ∧ BAC(y , y ′)
⇒
∃x .(BAA(x , x ′) ∧ J(x ′, y ′)

REF3 I (x) ∧ J(x , y) ∧ BAC(y , y ′)
⇒
J(x , y ′)

REF3 I (x) ∧ J(x , y) ∧ (G1(x) ∨ ... ∨ Gn(x))
⇒
H1(y) ∨ ... ∨ Hk (y)

Neeraj Kumar Singh (McMaster University) Modelling in Event-B March 25, 2014 16 / 34



Tools and Books

RODIN Platform: http://www.event-b.org/platform.html

Event B: http://www.event-b.org

ProB :http://www.stups.uni-duesseldorf.de/ProB

EB2ALL Toolset: http://eb2all.loria.fr
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Case Studies

Cardiac Pacemaker
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Heart System
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Electrical Signal of the Heart

Sinoatrial
(SA)
Node

Right Atrium

Right Ventricle
Right Bundle 

Branch

Left Bundle 
Branch

Left Ventricle

Bundle of His

Atrioventricular
(AV)
Node

Left Atrium
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The Cardiac Pacemaker

Pacemaker
A pacemaker is an electronic device
implanted in the body to regulate the
abnormal heart rhythm (bradycardia).
Type of pacemakers:1,2 and 3-Electrodes.

The Cardiac Pacemaker

Operating Modes : NASPE/BPEG Generic Code

Category Chambers Chambers Response to Rate Modulation
Paced Sensed Sensing

Letters O-None O-None O-None R-Rate Modulation
A-Atrium A-Atrium T-Triggered
V-Ventricle V-Ventricle I-Inhibited
D-Dual(A+V) D-Dual(A+V) D-Dual(T+I)

i.e. AOO, VOO, AAI, AAT, VVI, VVT, AATR,VVTR, AOOR etc. . .
Periodic stimuli : (AOO, VOO and DOO)
Aperiodic stimuli : (AAI, VVI, DDD, DDI, etc.)
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The Cardiac Pacemaker

Simple Pacemaker Model

Closed-loop Model

Pacemaker 
Actuator

Pacemaker 
Sensor
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The Cardiac Pacemaker

Design Patterns

Action Reaction Patterns

Real Time Patterns

Development of Cardiac Pacemaker

Formalization of 1 and 2-electrode cardiac pacemaker

PACEMAKER

One-Electrode
Pacemaker

Two-Electrode
Pacemaker

VentricularAtrial
Both 

Chambers

AOO VDDDDIDVIDOOVVTVVIVOOAATAAI DDD

VDDDDIDVI. . . DDD. . .

VDDRDDIRDVIRDOOR

VVTVVI. . .AATAAI

DDDR

. . . VVTVVI. . .AATAAI

AOOR VVTRVVIRVOORAATRAAIR

Chambers

Abstract Model

First Refinement

Second Refinement

Third Refinement

. . .. . .. . .. . . DDD

(Threshold)

(Hysteresis)

(Rate Modulation)
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Timing Cycles

time

VAI

LRI

VRP

PVARP

TARP

P

Q

R

S

T
P

Q

R

S

T

AVI

ARP
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The DDD Pacing Scenarios

Atrial
Sense

Ventricle
Sense

time

(D)

Atrial
Sense

Ventricle
Pace

time

(C)

Ventricle
Sense

Atrial
Pace

time

(B)

Atrial
Pace

Ventricle
Pace

time

(A)

AVI

VAI

LRI

PVARP

P

Q

R

S

T
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DDD Pacing Modes

axm1 : LRL ∈ 30 .. 175
axm2 : URL ∈ 50 .. 175
axm3 : URI ∈ N1 ∧ URI = 60000/URL
axm4 : LRI ∈ N1 ∧ LRI = 60000/LRL
axm5 : status = {ON, OFF}
axm6 : FixedAV ∈ 70 .. 300
axm7 : ARP ∈ 150 .. 500
axm8 : VRP ∈ 150 .. 500
axm9 : PVARP ∈ 150 .. 500
axm10 : V Blank ∈ 30 .. 60
. . .

inv1 : PM Actuator A ∈ status
inv2 : PM Sensor A ∈ status
inv5 : Pace Int ∈ URI .. LRI
inv6 : sp ∈ 1 .. Pace Int
inv7 : last sp ≥ PVARP ∧ last sp ≤ Pace Int

inv11 : sp < VRP ∧ AV Count STATE = FALSE⇒
PM Actuator V = OFF ∧ PM Sensor A = OFF∧
PM Sensor V = OFF ∧ PM Actuator A = OFF

inv12 : Pace Int flag = FALSE ∧ PM Actuator V = ON⇒
sp = Pace Int ∨ (sp < Pace Int∧
AV Count > V Blank ∧ AV Count ≥ FixedAV )

inv13 : Pace Int flag = FALSE ∧ PM Actuator A = ON⇒
(sp ≥ Pace Int − FixedAV )

. . .
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DDD Pacing Modes

EVENT Actuator ON V
WHEN

grd1 : PM Actuator V = OFF
grd2 : (sp = Pace Int)

∨
(sp < Pace Int ∧ AV Count > V Blank ∧
AV Count ≥ FixedAV )

grd3 : sp ≥ VRP ∧ sp ≥ PVARP
THEN

act1 : PM Actuator V := ON
act2 : last sp := sp

END

EVENT Actuator OFF V
WHEN

grd1 : PM Actuator V = ON
grd2 : (sp = Pace Int)

∨
(sp < Pace Int ∧ AV Count > V Blank ∧
AV Count ≥ FixedAV

grd3 : AV Count STATE = TRUE
grd4 : PM Actuator A = OFF
grd5 : PM Sensor A = OFF

THEN
act1 : PM Actuator V := OFF
act2 : AV Count := 0
act3 : AV Count STATE := FALSE
act4 : PM Sensor V := OFF
act5 : sp := 1

END

EVENT tic
WHEN

grd1 : (sp < VRP)
∨
(sp ≥ VRP ∧ sp < Pace Int − FixedAV ∧
PM Sensor A = ON ∧ PM Sensor V = ON

THEN
act1 : sp := sp + 1

END
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DDD Pacing Modes

EVENT Sensor ON V
WHEN

grd1 : PM Sensor V = OFF
grd2 : (sp ≥ VRP ∧ sp < Pace Int − FixedAV ∧ PM Sensor A = ON)

∨
(sp ≥ Pace Int − FixedAV ∧ AV Count STATE = TRUE)

grd4 : PM Actuator A = OFF
THEN

act1 : PM Sensor V := ON
END

EVENT Sensor OFF V
WHEN

grd1 : PM Sensor V = ON
grd2 : (sp < Pace Int − FixedAV )

∨
(sp ≥ Pace Int − FixedAV ∧ sp < Pace Int)

grd4 : PM Actuator V = OFF
grd5 : PM Actuator A = OFF
grd6 : sp ≥ VRP ∧ sp ≥ PVARP

THEN
act1 : PM Sensor V := OFF
act2 : last sp := sp
act3 : sp := 1
act5 : PM Sensor A := OFF
act6 : AV Count := 0
act7 : AV Count STATE := FALSE

END
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First Refinement (Threshold): Sensor Activity in DDD

PVARP

TARP

P

Q

R

S

T
P

Q

R

S

T

AVI

TARP

Threshold Level

PVARP

TARP

P

Q

R

S

T
P

Q

R

S

T

AVI TARP

Threshold Level
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First Refinement (Threshold): Sensor Activity in DDD

inv1 : Thr A ∈ N1 ∧ Thr V ∈ N1

inv2 : Pace Int flag = FALSE ∧ sp > VRP ∧ sp < Pace Int − FixedAV ⇒ PM Sensor V = ON

inv3 : Pace Int flag = FALSE ∧ sp > Pace Int − FixedAV ∧ sp < Pace Int ∧ AV Count STATE = TRUE⇒
PM Sensor A = OFF ∧ PM Sensor V = ON ∧ PM Actuator A = OFF

EVENT Thr Value A
ANY

Thr A val
WHERE

grd1 : PM Sensor A = ON
grd2 : Thr A val ∈ N
grd3 : Thr A State = TRUE
grd5 Thr A < STA THR A
grd6 (sp ≥ VRP ∧ sp < Pace Int − FixedAV )

THEN
act1 : Thr A := Thr A val
act2 : Thr A State := FALSE

END
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Second Refinement: Hysteresis

What is Hysteresis?

EVENT Hyt Pace Updating Refines Change Pace Int
ANY
Hyt Pace Int

WHERE
grd1 : Pace Int flag = TRUE
grd2 : Hyt Pace Int flag = TRUE
grd3 : Hyt Pace Int ∈ Pace Int .. LRI

THEN
act1 : Pace Int := Hyt Pace Int
act2 : Hyt Pace Int flag := FALSE
act3 : HYT State := TRUE

END
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Third Refinement: Rate Modulation

What is Rate Modulation?

Increase Interval Refines Change Pace Int
WHEN

grd1 : grd1 : Pace Int flag = TRUE
grd1 : acler sensed ≥ threshold
grd1 : HYT State = FALSE

THEN
act1 : Pace Int := 60000/MSR
act1 : acler sensed flag := TRUE

END

inv3 : acler sensed < acc thr ∧ acler sensed flag = TRUE ⇒ Pace Int = 60000/LRL
inv4 : acler sensed ≥ acc thr ∧ acler sensed flag = TRUE ⇒ Pace Int = 60000/MSR
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Validation, Proof Statistics and Code Generation

ProB

Used to check an expected behavior of each operating mode.

Proof Statistics
Model Total number Automatic Interactive

of POs Proof Proof
One-electrode pacemaker

Abstract Model 203 199(98%) 4(2%)
First Refinement 48 44(91%) 4(9%)
Second Refinement 12 8(66%) 4(34%)
Third Refinement 105 99(94%) 6(6%)

Two-electrode pacemaker
Abstract Model 204 195(95%) 9(5%)
First Refinement 234 223(95%) 11(5%)
Second Refinement 3 3(100%) 0(0%)
Third Refinement 83 74(89%) 9(11%)
Total 892 845(94%) 47(6%)

Code Generation using EB2ALL.
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