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What is Mathematical Logic?

Study of the principles underlying mathematical
reasoning.

I Central idea: logical consequence.

Branch of mathematics.

Makes explicit several fundamental distinctions:

I Syntax vs. semantics.
I Language vs. metalanguage.
I Theory vs. model.
I Truth vs. proof.

Principal tools: formal systems called logics.

W. M. Farmer CAS 734 Winter 2014: 02 Review of Mathematical Logic 2/15



Syntax vs. Semantics

The syntax of a language is concerned with how the
expressions of the language are constructed.

I For example, “the numeral 144 has three digits” is a
statement about syntax.

The semantics of a language is concerned with what the
expressions of the language mean.

I For example, “the number 144 is a perfect square” is a
statement about semantics.

This distinction is crucial in mathematics and computing.

I Confusion between syntax and semantics is the source of
many errors.

Logic carefully disentangles the roles of syntax and
semantics in reasoning.
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What is a Logic?

Informally, a logic is a system of reasoning.

Formally, a logic is a family of formal languages with:

1. A common syntax.
2. A common semantics.
3. A notion of logical consequence.

A logic may include a proof system for proving that a
given formula is a logical consequence of a given set of
formulas.

Examples:

I Propositional logic.
I First-order logic.
I Simple type theory (higher-order logic).
I Zermelo-Fraenkel (zf) set theory.
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Language Syntax

A language defines a collection of expressions formed
from:

I Variables.
I Constants (nonlogical constants).
I Constructors (logical constants).

Three kinds of expressions:

I Terms: Denote objects or values.
I Formulas: Make assertions about objects or values.
I Types: Restrict the scope of variables, control the

formation of expressions, and classify expressions by
their values.

Some languages have constructors that bind variables
(e.g., ∀, ∃, λ, ι, ε, { | }).
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Language Semantics

A model M for a language L is a pair (D,V ) where:

1. D is a set of values called the domain that includes the
truth values t and f.

2. V is a function from the expressions of L to D called the
valuation function.

M satisfies a formula A of L, written M |= A, if
V (A) = t.

M satisfies a set Σ of formulas of L, written M |= Σ, if M
satisfies each A ∈ Σ.

A is a semantic consequence of Σ, written Σ |= A, if
every model for L that satisfies Σ also satisfies A.

A is valid, written |= A, if every model for L satisfies A.

Σ is satisfiable if there exists some model for L that
satisfies Σ.
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Language vs. Metalanguage

A language is for talking about a certain subject.

A metalanguage for a language L is a language for talking
about L itself.

A natural language, such as English, usually serves as its
own metalanguage.

I As a result, the distinction is not explicit in English.

A formal language, such as a logical or programming
language, usually is not expressive enough to serve as its
own metalanguage.

I A metalanguage of a formal language may be a formal
language, but usually it is only informal.
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Proof

Mathematical proof is an essential component of the
mathematics process which is unique to mathematics.

It is a method of communication, certification, and
discovery.

An informal proof is a convincing argument that a
statement about a mathematical model is true.

A formal proof is a logical deduction from a set of
premises to a conclusion.

I Can be mechanically checked.

A formal proof can be presented in two ways:

I As a description of the actual deduction.
I As a prescription for creating the deduction.
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Hilbert-Style Proof Systems

A Hilbert-style proof system P for a language L consists
of:

1. A set of formulas of L called logical axioms.
2. A set of rules of inference.

A proof of A from Σ in P is a finite sequence B1, . . . ,Bn

of formulas of L with Bn = A such that each Bi is either
a logical axiom, a member of Σ, or follows from earlier Bj

by one of the rules of inference.

A is syntactic consequence of Σ in P, written Σ `P A, if
there is a proof of A from Σ in P.

A is a theorem in P, written `P A, if there is a proof of
A from ∅ in P.

Σ is consistent in P if not every formula is a syntactic
consequence of Σ in P.
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Kinds of Proof Systems

Hilbert style.

Symmetric sequent (Gentzen).

Asymmetric sequent.

Natural deduction (Gentzen, Quine, Fitch, Berry).

Semantic tableaux (Beth, Hintikka).

Resolution (J. Robinson).
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Soundness and Completeness

Let P be a proof system for a language L.

P is sound if

Σ `P A implies Σ |= A.

P is complete if

Σ |= A implies Σ `P A.

A unsound proof system is not usually very useful, while a
sound but incomplete proof system can be quite useful.
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Axiomatic Theories

An axiomatic theory is a pair T = (L, Γ) where:

1. L is a language (the language of T ).
2. Γ is a set of formulas of L (the axioms of T ).

M is a model of T , written M |= T , if M |= Γ.

A is valid in T , written T |= A, if Γ |= A.

A is a theorem of T in P, written T `P A, if Γ `P A.

T is satisfiable if Γ is satisfiable.

T is consistent in P if Γ is consistent in P.
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Theory vs. Model

A model for a language is a concrete mathematical model.

A axiomatic theory is an abstract mathematical model.

An axiomatic theory can be viewed as a specification of
its models.

I A theory is to a model as a specification is to an
implementation.

Axiomatic theories fall into two categories:

I Those intended to describe a single model
(e.g., a theory of natural number arithmetic).

I Those intended to describe a collection of models
(e.g., a theory of monoids).
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Truth vs. Proof

Semantics Syntax

truth proof
semantic consequence syntactic consequence
A is valid A is a theorem in P
|= A `P A
A is valid in T A is a theorem of T in P
T |= A T `P A
T is satisfiable T is consistent in P

Semantic consequence and syntactic consequence are
different forms of logical consequence.

The semantic and syntactic notions are equivalent in the
most common logics:

I Propositional logic (Bernays, 1918).
I First-order logic (Gödel, 1930).
I Simple type theory (Henkin, 1950).
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Mathematical Problems: Fundamental Form

Most mathematical problems can be expressed as
statements of the form

T |= A

where T is an axiomatic theory and A is a formula.

There are three basic ways of deciding whether or not
T |= A:

1. Model checking:
Show that M |= A for each model M of T .

2. Proof:
Show T `P A for some sound proof system P.

3. Counterexample:
Show M |= ¬A for some model M of T .

W. M. Farmer CAS 734 Winter 2014: 02 Review of Mathematical Logic 15/15


