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What is First-Order Logic?

First-order logic is the study of statements about
individuals using functions, predicates, and quantification.

I First-order logic is also called first-order predicate logic
and first-order quantificational logic.

First-order logic is propositional logic plus:

I Terms that denote individuals.
I Predicates that are applied to terms.
I Quantifiers applied to individual variables.

First-order logic is “first-order” because quantification is
over individuals but not over higher-order objects such as
functions and predicates.

There are many versions of first-order logic.

We will define and employ a version of first-order logic
named FOL.
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Syntax of FOL: Languages

Let V be a fixed infinite set of symbols called variables.

A language of FOL is a triple L = (C,F ,P) where:

I C is a set of symbols called individual constants.
I F is a set of symbols called function symbols, each with

an assigned arity ≥ 1.
I P is a set of symbols called predicate symbols, each with

an assigned arity ≥ 1. P contains the binary predicate
symbol =.

I V, C, F , and P are pairwise disjoint.

W. M. Farmer CAS 734 Winter 2014: 03 Review of First-Order Logic 3/21



Syntax of FOL: Terms and Formulas

Let L = (C,F ,P) be a language of FOL.

A term of L is a string of symbols inductively defined by
the following formation rules:

I Each x ∈ V and a ∈ C is a term of L.
I If f ∈ F is n-ary and t1, . . . , tn are terms of L, then

f (t1, . . . , tn) is a term of L.

A formula of L is a string of symbols inductively defined
by the following formation rules:

I If p ∈ P is n-ary and t1, . . . , tn are terms of L, then
p(t1, . . . , tn) is a formula of L.

I If A and B are formulas of L and x ∈ V, then (¬A) and
(A⇒ B), and (∀ x . A) are formulas of L.

=, ¬, ⇒, and ∀ are the logical constants of FOL.
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Syntax of FOL: Notational Definitions
(s = t) denotes = (s, t).
(s 6= t) denotes (¬(s = t)).
T denotes (∀ x . (x = x)).
F denotes (¬(T)).
(A ∨ B) denotes ((¬A)⇒ B).
(A ∧ B) denotes (¬((¬A) ∨ (¬B))).
(A⇔ B) denotes ((A⇒ B) ∧ (B ⇒ A)).
(∃ x . A) denotes (¬(∀ x . (¬A)).
(� x1, . . . , xn . A) denotes (� x1 . (� x2, . . . , xn . A))

where n ≥ 2 and � ∈ {∀,∃}.
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Free and Bound Variables

The scope of a quantifier ∀ x or ∃ x in a formula ∀ x . B
or ∃ x . B , respectively, is the part of B that is not in a
subformula of B of the form ∀ x . C or ∃ x . C .

An occurrence of a variable x in a formula A is free if it is
not in the scope of a quantifier ∀ x or ∃ x ; otherwise the
occurrence of x in A is bound.

I An occurrence of a variable in a formula is either free or
bound but never both.

I A variable can be both bound and free in a formula.

A formula is closed if it contains no free variables.

A sentence is a closed formula.
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Substitution

Let x be a variable, t a term, and A a formula.

The substitution of t for x in A, written

A[x 7→ t] or A[t/x ],

is the result of replacing each free occurrence of x in A
with t.

Suppose A is ∀ y . x = y and t is f (y). Then the
substitution A[x 7→ t] is said to capture y .

I Variable captures often produce unsound results.

t is free for x in A if no free occurrence of x in A is in the
scope of ∀ y or ∃ y for any variable y occurring t.

I Hence, t is free for x in A if the substitution A[x 7→ t]
does not result in any variable captures.
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Semantics of FOL: Models

A model for a language L = (C,F ,P) of FOL is a pair
M = (D, I ) where D is a nonempty domain (set) and I is
a total function on C ∪ F ∪ P such that:

I If a ∈ C, I (a) ∈ D.
I If f ∈ F is n-ary, I (f ) : Dn → D and I (f ) is total.
I If p ∈ P is n-ary, I (p) : Dn → {t, f} and I (p) is total.
I I (=) is idD , the identity predicate on D.

A variable assignment into M is a function that maps
each x ∈ V to an element of D.

Given a variable assignment ϕ into M , x ∈ V , and d ∈ D,
let ϕ[x 7→ d ] be the variable assignment ϕ′ into M such
ϕ′(x) = d and ϕ′(y) = ϕ(y) for all y 6= x .
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Semantics of FOL: Valuation Function
The valuation function for a model M for a language
L = (C,F ,P) of FOL is the binary function VM that satisfies
the following conditions for all variable assignments ϕ into M
and all terms t and formulas A of L:

1. Let t ∈ V . Then VM
ϕ (t) = ϕ(t).

2. Let t ∈ C. Then VM
ϕ (t) = I (t).

3. Let t = f (t1, . . . , tn). Then
VM
ϕ (t) = I (f )(VM

ϕ (t1), . . . ,VM
ϕ (tn)).

4. Let A = p(t1, . . . , tn). Then
VM
ϕ (A) = I (p)(VM

ϕ (t1), . . . ,VM
ϕ (tn)).

5. Let A = (¬A′). If VM
ϕ (A′) = f, then VM

ϕ (A) = t;
otherwise VM

ϕ (A) = f.
6. Let A = (A1 ⇒ A2). If VM

ϕ (A1) = t and VM
ϕ (A2) = f,

then VM
ϕ (A) = f; otherwise VM

ϕ (A) = t.
7. Let A = (∀ x . A′). If VM

ϕ[x 7→d ](A
′) = t for all d ∈ D, then

VM
ϕ (A) = t; otherwise VM

ϕ (A) = f.
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Notes on Quantifiers

The universal and existential quantifiers are duals of each
other:

¬(∀ x . A) ⇔ ∃ x . ¬A, ¬(∃ x . A) ⇔ ∀ x . ¬A.

Changing the order of quantifiers in a formula usually
changes the meaning of the formula.

I As a rule, ∀ x . ∃ y . A 6⇔ ∃ y . ∀ x . A.

In a formula of the form ∀ x . ∃ y . A, the value of the
existentially quantified variable y depends on the value of
the universally quantified variable x .

A universal statement like “All rodents are mammals” is
formalized as ∀ x . rodent(x)⇒ mammal(x).

An existential statement like “Some mammals are
rodents” is formalized as ∃ x . mammal(x) ∧ rodent(x).
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Algebras as Models

If L = (C,F ,P) is a finite language of FOL, we may
present the language as

L = (c1, . . . , ck , f1, . . . , fm, p1, . . . , pn)

where C = {c1, . . . , ck}, F = {f1, . . . , fm}, and
P = {p1, . . . , pn}.
An algebra

(D, d1, . . . , dk , g1, . . . , gm, q1, . . . .qn)

can then be considered a model for L if M = (D, I ) is a
model for L where:

1. I (ci ) = di for 1 ≤ i ≤ k .
2. I (fi ) = gi for 1 ≤ i ≤ m.
3. I (pi ) = qi for 1 ≤ i ≤ n.
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Metatheorems of FOL

Completeness Theorem (Gödel 1930). There is a sound
and complete proof system for FOL.

Compactness Theorem. Let Σ be a set of formulas of a
language of FOL. If Σ is finitely satisfiable, then Σ is
satisfiable.

Undecidability Theorem (Church 1936). First-order logic
is undecidable. That is, for some language L of FOL, the
problem of whether or not a given formula of L is valid is
undecidable.
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A Hilbert-Style Proof System (1/2)

Let H be the following Hilbert-style proof system for a
language L of FOL:

The logical axioms of H are all formulas of L that are
instances of the following schemas:

I For propositional logic:
A1: A⇒ (B ⇒ A).
A2: (A⇒ (B ⇒ C ))⇒ ((A⇒ B)⇒ (A⇒ C )).
A3: (¬A⇒ ¬B)⇒ (B ⇒ A).

I For quantification:
A4: (∀ x . (A⇒ B))⇒ (A⇒ (∀ x . B))

provided x is not free in A.
A5: (∀ x . A)⇒ A[x 7→ t]

provided t is free for x in A.
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A Hilbert-Style Proof System (2/2)
I For equality:

A6: ∀ x . x = x .
A7: ∀ x , y . x = y ⇒ y = x .
A8: ∀ x , y , z . (x = y ∧ y = z)⇒ x = z .
A9: ∀ x1, . . . , xn, y1, . . . , yn .

(x1 = y1 ∧ · · · ∧ xn = yn)⇒
f (x1, . . . , xn) = f (y1, . . . , yn)

where f ∈ F is n-ary.
A10: ∀ x1, . . . , xn, y1, . . . , yn .

(x1 = y1 ∧ · · · ∧ xn = yn)⇒
(p(x1, . . . , xn)⇔ p(y1, . . . , yn))

where p ∈ P is n-ary.

The rules of inference of H are:

MP: From A and (A⇒ B), infer B.
GEN: From A, infer (∀ x . A), for any x ∈ V.
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More Metatheorems of FOL

Deduction Theorem. Σ∪{A} `H B implies Σ `H A⇒ B .

Soundness Theorem. Σ `H A implies Σ |= A.

Completeness Theorem. Σ |= A implies Σ `H A.

Soundness and Completeness Theorem (second form).
Σ is consistent in H iff Σ is satisfiable.
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Theories

A theory in FOL is a pair T = (L, Γ) where:

1. L is a language of FOL.
2. Γ is a set of sentences of L.

Examples:

I Theories of orders, lattices, and boolean algebras.
I Theories of monoids and groups.
I Presburger arithmetic.
I First-order Peano arithmetic.
I Theory of real closed fields.
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The Theory of Boolean Algebras

Let BA = (L, Γ) be the theory of FOL where L is defined
below and Γ is the set of sentences of L on the next page.

L = (+, ∗, , 0, 1,=) is a language of FOL such that +
and ∗ are binary function symbols, is a unary function
symbol, and 0 and 1 are individual constants.

A boolean algebra is a model of BA.

I Named after the logician George Boole (1815-1864).
I There are infinitely many nonisomorphic models of BA.
I If (B,+, ∗, , 0, 1) is a boolean algebra, then (B,≤) is a

complemented distributive lattice with a top and bottom
where a ≤ b means a = a ∗ b ∧ a + b = b.

Examples:

I M1 = ({T,F},∨,∧,¬,F,T,⇔).
I M2 = ({S | S ⊆ U},∪,∩, , ∅,U,=) where U is any set.

BA is used to model electronic circuits.
W. M. Farmer CAS 734 Winter 2014: 03 Review of First-Order Logic 17/21



The Axioms of BA

Associativity Laws
∀ x , y , z . (x + y) + z = x + (y + z)
∀ x , y , z . (x ∗ y) ∗ z = x ∗ (y ∗ z)

Commutativity Laws
∀ x , y . x + y = y + x
∀ x , y . x ∗ y = y ∗ x

Distributive Laws
∀ x , y , z . x + (y ∗ z) = (x + y) ∗ (x + z)
∀ x , y , z . x ∗ (y + z) = (x ∗ y) + (x ∗ z)

Identity Laws
∀ x . x + 0 = x
∀ x . x ∗ 1 = x

Complement Laws
∀ x . x + x = 1
∀ x . x ∗ x = 0
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Theorems of BA
Idempotent Laws
∀ x . x + x = x
∀ x . x ∗ x = x

Absorption Laws
∀ x , y . x + (x ∗ y) = x
∀ x , y . x ∗ (x + y) = x

De Morgan Laws
∀ x , y . x + y = x ∗ y
∀ x , y . x ∗ y = x + y

Laws of Zero and One
∀ x . x + 1 = 1
∀ x . x ∗ 0 = 0
0 = 1
1 = 0

Law of Double Complement
∀ x . x = x
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Peano Arithmetic

PA = (L, Γ) is (second-order) Peano arithmetic (devised
by G. Peano, 1889).

L is a language of second-order logic with an individual
constant symbol 0 and a unary function symbol S .

I 0 is intended to represent the number zero.
I S is intended to represent the successor function, i.e.,

S(a) means a + 1.

Γ is the following set of axioms:

I 0 has no predecessor. ∀ x . ¬(0 = S(x)).
I S is injective. ∀ x , y . S(x) = S(y)⇒ x = y .
I Induction principle.
∀P . (P(0) ∧ ∀ x . P(x)⇒ P(S(x)))⇒ ∀ x . P(x).

+ and ∗ can be defined in PA.

PA is categorical, i.e, it has exactly one model up to
isomorphism (Dedekind, 1888).
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First-Order Peano Arithmetic
PA′ = (L′, Γ′) is first-order Peano arithmetic.
L′ is a language of FOL with an individual constant
symbol 0, a unary function symbol S , and binary function
symbols + and ∗.
Γ′ is the following set of axioms:

I ∀ x . ¬(S(x) = 0).
I ∀ x , y . S(x) = S(y)⇒ x = y .
I ∀ x . x + 0 = x .
I ∀ x , y . x + S(y) = S(x + y).
I ∀ x . x ∗ 0 = 0.
I ∀ x , y . x ∗ S(y) = (x ∗ y) + x .
I Each universal closure A of a formula of the form

(B[x 7→ 0] ∧ (∀ x . B ⇒ B[x 7→ S(x)]))⇒ ∀ x . B

where B is a formula of L′.

PA′ is a noncategorical approximation of Peano
arithmetic with infinitely many “nonstandard” models.
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