

CAS 734 Winter 2014

04 Simple Type Theory

William M. Farmer

Department of Computing and Software
McMaster University

18 January 2014

Type Theory

- Russell introduced a logic now known as the **ramified theory of types** in 1908 to serve as a foundation for mathematics.
 - ▶ Included a hierarchy of types to avoid set-theoretic paradoxes such Russell's paradox and semantic paradoxes such as Richard's paradox.
 - ▶ Employed as the logic of Whitehead and Russell's **Principia Mathematica**.
 - ▶ Not used today due to its high complexity.
- Chwistek and Ramsey suggested in the 1920s a simplified version of the ramified theory of types called the **simple theory of types** or, more briefly, **simple type theory**.
- Church published in 1940 a formulation of simple type theory with lambda-notation and lambda-conversion.

Intuitionistic Type Theory

- Several intuitionistic or constructive type theories have been developed.
- Examples:
 - ▶ Martin-Löf's [Intuitionistic Type Theory](#) (1980).
 - ▶ Coquand and Huet's [Calculus of Constructions](#) (1984).
- Many intuitionistic type theories exploit the Curry-Howard Formulas-as-Types Isomorphism.
 - ▶ Formulas serve as types or specifications.
 - ▶ Terms serve as proofs or programs.

What is Simple Type Theory?

- A simple, elegant, highly expressive, and practical logic.
 - ▶ Familiar to some computer scientists but not to many mathematicians, engineers, and other scientists.
- Most popular form of type theory.
 - ▶ Types are used to classify expressions by value and control the formation of expressions.
 - ▶ Classical: nonconstructive, 2-valued.
 - ▶ Higher order: quantification over functions.
 - ▶ Can be viewed as a “function theory”.
- Natural extension of first-order logic.
 - ▶ Based on the same principles as first-order logic.
 - ▶ Includes n th-order logic for all $n \geq 1$.

Who needs Simple Type Theory?

An understanding of simple type would be beneficial to anyone who needs to work with or apply mathematical logic. This is particularly true for:

- Engineers who need to write (and read) precise specifications.
- Computer scientists who employ functional programming languages such as Lisp, ML, and Haskell.
- Software engineers who use higher-order theorem proving systems to model and analyze software systems.
- Mathematics students who are studying the foundations of mathematics or model theory.

Purpose of this Presentation

- Present a pure form of simple type theory named STT.
- Show the virtues of simple type theory using STT.
- Argue that simple type theory is an attractive alternative to first-order logic for practical-minded scientists, engineers, and mathematicians.

History

1908	Russell
	Ramified theory of types.
1910	Russell, Whitehead
	Principia Mathematica.
1920s	Chwistek, Ramsey
	Simple theory of types (simple type theory).
1920–30s	Carnap, Gödel, Tarski, Quine
	Detailed formulations of simple type theory.
1940	Church
	Simple type theory with lambda-notation.
1950	Henkin
	General models and completeness theorem.
1963	Henkin, Andrews
	Concise formulation based on equality.
1980-90s	HOL, IMPS, Isabelle, ProofPower, PVS, TPS
	Higher-order theorem proving systems.

Syntax of STT: Types

- A **type** of STT is defined by the following rules:

$$T1 \frac{}{\mathbf{type}[\iota]} \text{ (Type of individuals)}$$

$$T2 \frac{}{\mathbf{type}[*]} \text{ (Type of truth values)}$$

$$T3 \frac{\mathbf{type}[\alpha], \mathbf{type}[\beta]}{\mathbf{type}[(\alpha \rightarrow \beta)]} \text{ (Function type)}$$

- Let \mathcal{T} denote the set of types of STT.

Syntax of STT: Symbols

- The logical symbols of STT are:
 - ▶ Function application: \circ (hidden).
 - ▶ Function abstraction: λ .
 - ▶ Equality: $=$.
 - ▶ Definite description: I (capital iota).
 - ▶ An infinite set \mathcal{V} of symbols called **variables**.
- A language of STT is a pair $L = (\mathcal{C}, \tau)$ where:
 - ▶ \mathcal{C} is a set of symbols called **constants**.
 - ▶ $\tau : \mathcal{C} \rightarrow \mathcal{T}$ is a total function.

Syntax of STT: Expressions

An **expression** E of **type** α of a STT language $L = (\mathcal{C}, \tau)$ is defined by the following rules:

$$\text{E1} \quad \frac{x \in \mathcal{V}, \text{type}[\alpha]}{\mathbf{expr}_L[(x : \alpha), \alpha]} \quad (\text{Variable})$$

$$\text{E2} \quad \frac{c \in \mathcal{C}}{\mathbf{expr}_L[c, \tau(c)]} \quad (\text{Constant})$$

$$\text{E3} \quad \frac{\mathbf{expr}_L[A, \alpha], \mathbf{expr}_L[F, (\alpha \rightarrow \beta)]}{\mathbf{expr}_L[F(A), \beta]} \quad (\text{Application})$$

$$\text{E4} \quad \frac{x \in \mathcal{V}, \text{type}[\alpha], \mathbf{expr}_L[B, \beta]}{\mathbf{expr}_L[(\lambda x : \alpha . B), (\alpha \rightarrow \beta)]} \quad (\text{Abstraction})$$

$$\text{E5} \quad \frac{\mathbf{expr}_L[E_1, \alpha], \mathbf{expr}_L[E_2, \alpha]}{\mathbf{expr}_L[(E_1 = E_2), *]} \quad (\text{Equality})$$

$$\text{E6} \quad \frac{x \in \mathcal{V}, \text{type}[\alpha], \mathbf{expr}_L[A, *]}{\mathbf{expr}_L[(\text{I } x : \alpha . A), \alpha]} \quad (\text{Definite description})$$

Syntax of STT: Conventions

- E_α denotes an expression E of type α .
- Parentheses and the types of variables may be dropped when meaning is not lost.

Semantics of STT: Standard Models

- A **standard model** for a language $L = (\mathcal{C}, \tau)$ of STT is a triple $M = (\mathcal{D}, I, e)$ where:
 - ▶ $\mathcal{D} = \{D_\alpha : \alpha \in \mathcal{T}\}$ is a set of nonempty domains (sets).
 - ▶ $D_* = \{\text{T}, \text{F}\}$, the domain of truth values.
 - ▶ $D_{\alpha \rightarrow \beta}$ is the set of **all** functions from D_α to D_β .
 - ▶ I maps each $c \in \mathcal{C}$ to an element of $D_{\tau(c)}$.
 - ▶ e maps each $\alpha \in \mathcal{T}$ to a member of D_α .
- A **variable assignment** into M is a function that maps each expression $(x : \alpha)$ to an element of D_α .
- Given a variable assignment φ into M , an expression $(x : \alpha)$, and $d \in D_\alpha$, let $\varphi[(x : \alpha) \mapsto d]$ be the variable assignment φ' into M such that $\varphi'((x : \alpha)) = d$ and $\varphi'(v) = \varphi(v)$ for all $v \neq (x : \alpha)$.

Semantics of STT: Valuation Function

The **valuation function** for a standard model $M = (\mathcal{D}, I, e)$ for a language $L = (\mathcal{C}, \tau)$ of STT is the binary function V^M that satisfies the following conditions for all variable assignments φ into M and all expressions E of L :

1. Let E be $(x : \alpha)$. Then $V_\varphi^M(E) = \varphi((x : \alpha))$.
2. Let $E \in \mathcal{C}$. Then $V_\varphi^M(E) = I(E)$.
3. Let E be $F(A)$. Then $V_\varphi^M(E) = V_\varphi^M(F)(V_\varphi^M(A))$.
4. Let E be $(\lambda x : \alpha . B_\beta)$. Then $V_\varphi^M(E)$ is the $f : D_\alpha \rightarrow D_\beta$ such that, for each $d \in D_\alpha$, $f(d) = V_{\varphi[(x:\alpha) \mapsto d]}^M(B_\beta)$.
5. Let E be $(E_1 = E_2)$. If $V_\varphi^M(E_1) = V_\varphi^M(E_2)$, then $V_\varphi^M(E) = \text{T}$; otherwise $V_\varphi^M(E) = \text{F}$.
6. Let E be $(\text{I} x : \alpha . A)$. If there is a unique $d \in D_\alpha$ such that $V_{\varphi[(x:\alpha) \mapsto d]}^M(A) = \text{T}$, then $V_\varphi^M(E) = d$; otherwise $V_\varphi^M(E) = e(\alpha)$.

Notational Definitions

\top	means	$(\lambda x : * . x) = (\lambda x : * . x).$
\mathbf{F}	means	$(\lambda x : * . \top) = (\lambda x : * . x).$
$(\neg A_*)$	means	$A_* = \mathbf{F}.$
$(A_\alpha \neq B_\alpha)$	means	$\neg(A_\alpha = B_\alpha).$
$(A_* \wedge B_*)$	means	$(\lambda f : * \rightarrow (* \rightarrow *) . f(\top)(\top)) =$ $(\lambda f : * \rightarrow (* \rightarrow *) . f(A_*)(B_*)).$
$(A_* \vee B_*)$	means	$\neg(\neg A_* \wedge \neg B_*).$
$(A_* \Rightarrow B_*)$	means	$\neg A_* \vee B_*.$
$(A_* \Leftrightarrow B_*)$	means	$A_* = B_*.$
$(\forall x : \alpha . A_*)$	means	$(\lambda x : \alpha . A_*) = (\lambda x : \alpha . \top).$
$(\exists x : \alpha . A_*)$	means	$\neg(\forall x : \alpha . \neg A_*).$
\perp_α	means	$\mathbf{I} x : \alpha . x \neq x.$
$\text{if}(A_*, B_\alpha, C_\alpha)$	means	$\mathbf{I} x : \alpha . (A_* \Rightarrow x = B_\alpha) \wedge$ $(\neg A_* \Rightarrow x = C_\alpha)$

where x does not occur in A_* , B_α , or C_α

Expressivity

- **Theorem.** *There is a faithful interpretation of n th-order logic in STT for all $n \geq 1$.*
- Most mathematical notions can be directly and naturally expressed in STT.
- **Examples:**

equiv-rel =

$$\lambda p : (\iota \rightarrow (\iota \rightarrow *)) .$$

$$\forall x : \iota . p(x)(x) \wedge$$

$$\forall x, y : \iota . p(x)(y) \Rightarrow p(y)(x) \wedge$$

$$\forall x, y, z : \iota . (p(x)(y) \wedge p(y)(z)) \Rightarrow p(x)(z)$$

compose =

$$\lambda f : (\iota \rightarrow \iota) . \lambda g : (\iota \rightarrow \iota) . \lambda x : \iota . f(g(x))$$

inv-image =

$$\lambda f : (\iota \rightarrow \iota) . \lambda s : (\iota \rightarrow *) .$$

$$\mathbf{I} s' : (\iota \rightarrow *) . \forall x : \iota . s'(x) \Leftrightarrow s(f(x))$$

Peano Arithmetic

- Let $\mathbf{PA} = (L, \Gamma)$ be the theory of STT such that:
 $L = (\{0, S\}, \tau)$ where $\tau(0) = \iota$ and $\tau(S) = \iota \rightarrow \iota$.
 Γ is the set of the following three formulas:

1. 0 has no predecessor: $\forall x : \iota . 0 \neq S(x)$.
2. S is injective: $\forall x, y : \iota . S(x) = S(y) \Rightarrow x = y$.
3. Induction principle:

$$\forall P : \iota \rightarrow * .$$

$$P(0) \wedge (\forall x : \iota . P(x) \Rightarrow P(S(x))) \Rightarrow \forall x : \iota . P(x).$$

- Theorem (Dedekind, 1888). \mathbf{PA} has (up to isomorphism) a unique standard model $M = (\mathcal{D}, I, e)$ where $D_\iota = \{0, 1, 2, \dots\}$.

Complete Ordered Field (1/3)

- Let $\mathbf{COF} = (L, \Gamma)$ be the theory of STT such that:
 $L = (\{+, 0, -, \cdot, 1, {}^{-1}, \text{pos}, <, \leq, \text{ub}, \text{lub}\}, \tau)$ where

Constant c	Type $\tau(c)$
$0, 1$	ι
$-, {}^{-1}$	$\iota \rightarrow \iota$
pos	$\iota \rightarrow *$
$+, \cdot$	$\iota \rightarrow (\iota \rightarrow \iota)$
$<, \leq$	$\iota \rightarrow (\iota \rightarrow *)$
ub, lub	$\iota \rightarrow ((\iota \rightarrow *) \rightarrow *)$

Complete Ordered Field (2/3)

Γ is the set of the following eighteen formulas:

1. $\forall x, y, z : \iota . (x + y) + z = x + (y + z).$
2. $\forall x, y : \iota . x + y = y + x.$
3. $\forall x : \iota . x + 0 = x.$
4. $\forall x : \iota . x + (-x) = 0.$
5. $\forall x, y, z : \iota . (x \cdot y) \cdot z = x \cdot (y \cdot z).$
6. $\forall x, y : \iota . x \cdot y = y \cdot x.$
7. $\forall x : \iota . x \cdot 1 = x.$
8. $\forall x : \iota . x \neq 0 \Rightarrow x \cdot x^{-1} = 1.$
9. $0 \neq 1.$
10. $\forall x, y, z : \iota . x \cdot (y + z) = (x \cdot y) + (x \cdot z).$
11. $\forall x : \iota . (x = 0 \wedge \neg \text{pos}(x) \wedge \neg \text{pos}(-x)) \vee$
 $(x \neq 0 \wedge \text{pos}(x) \wedge \neg \text{pos}(-x)) \vee$
 $(x \neq 0 \wedge \neg \text{pos}(x) \wedge \text{pos}(-x)).$

Complete Ordered Field (3/3)

12. $\forall x, y : \iota . (\text{pos}(x) \wedge \text{pos}(y)) \Rightarrow \text{pos}(x + y).$
13. $\forall x, y : \iota . (\text{pos}(x) \wedge \text{pos}(y)) \Rightarrow \text{pos}(x \cdot y).$
14. $\forall x, y : \iota . x < y \Leftrightarrow \text{pos}(y - x).$
15. $\forall x, y : \iota . x \leq y \Leftrightarrow (x < y \vee x = y).$
16. $\forall x : \iota . \forall s : \iota \rightarrow * . \text{ub}(x)(s) = \forall y : \iota . s(y) \Rightarrow y \leq x.$
17. $\forall x : \iota . \forall s : \iota \rightarrow * .$
 $\text{lub}(x)(s) = (\text{ub}(x)(s) \wedge (\forall y : \iota . \text{ub}(y)(s) \Rightarrow x \leq y)).$
18. $\forall s : \iota \rightarrow * .$
 $\exists x : \iota . s(x) \wedge \exists x : \iota . \text{ub}(x)(s) \Rightarrow \exists x : \iota . \text{lub}(x)(s).$

- **Theorem.** **COF** has (up to isomorphism) a unique standard model $M = (\mathcal{D}, I, e)$ where $D_\iota = \mathbf{R}$, the set of real numbers.

Incompleteness of STT

Theorem. *There is no sound and complete proof system for STT.*

Proof. Suppose \mathbf{P} is a sound and complete proof system for STT. By the soundness of \mathbf{P} and Gödel's Incompleteness Theorem, there is a sentence A such that (1) $M \models A$, where M is the unique standard model for \mathbf{PA} (up to isomorphism), and (2) $\mathbf{PA} \not\vdash_{\mathbf{P}} A$. By the completeness of \mathbf{P} , (2) implies $\mathbf{PA} \not\models A$ and hence $M \not\models A$ since M is the only standard model of \mathbf{PA} , which contradicts (1). \square

A Hilbert-Style Proof System for STT (1/2)

- Axioms:

A1 (Truth Values)

$$\forall f : * \rightarrow * . (f(T_*) \wedge f(F_*)) \Leftrightarrow (\forall x : * . f(x)).$$

A2 (Leibniz' Law)

$$\forall x, y : \alpha . (x = y) \Rightarrow (\forall p : \alpha \rightarrow * . p(x) \Leftrightarrow p(y)).$$

A3 (Extensionality)

$$\forall f, g : \alpha \rightarrow \beta . (f = g) = (\forall x : \alpha . f(x) = g(x)).$$

A4 (Beta-Reduction)

$$(\lambda x : \alpha . B_\beta)(A_\alpha) = B_\beta[(x : \alpha) \mapsto A_\alpha]$$

provided A_α is free for x in B_β .

A5 (Proper Definite Description)

$$(\exists ! x : \alpha . A) \Rightarrow A[(x : \alpha) \mapsto (\text{I } x : \alpha . A)].$$

A6 (Improper Definite Description)

$$\neg(\exists ! x : \alpha . A) \Rightarrow (\text{I } x : \alpha . A) = \perp_\alpha.$$

A Hilbert-Style Proof System for STT (2/2)

- Rule of inference:

R (Equality Substitution)

From $A_\alpha = B_\alpha$ and C_* infer the result of replacing one occurrence of A_α in C_* by an occurrence of B_α .

- Call this proof system **A**.
 - ▶ Due to Andrews, 1963.
- Theorem (Jensen, 1969). **A** plus an axiom of infinity is equiconsistent with bounded Zermelo set theory.

General Models

- A **general structure** for a language $L = (\mathcal{C}, \tau)$ of STT is a triple $M = (\mathcal{D}, I, e)$ where:
 - ▶ $\mathcal{D} = \{D_\alpha : \alpha \in \mathcal{T}\}$ is a set of nonempty domains (sets).
 - ▶ $D_* = \{T, F\}$, the domain of truth values.
 - ▶ $D_{\alpha \rightarrow \beta}$ is **some** set of functions from D_α to D_β .
 - ▶ I maps each $c \in \mathcal{C}$ to an element of $D_{\tau(c)}$.
 - ▶ e maps each $\alpha \in \mathcal{T}$ to a member of D_α .
- M is a **general model** for L if there is a binary function V^M that satisfies the same conditions as the valuation function for a standard model.
- A general model is a **nonstandard model** if it is not a standard model.

Completeness of STT

Theorem (Henkin, 1950). *There is a sound and complete proof system for STT with respect to general models.*

Corollary. *STT is compact with respect to general models.*

Theorem (Andrews, 1963). **A** *is a sound and complete proof system for STT with respect to general models.*

Attributes of a Practical Logic: STT

1. **Formal Syntax.** Yes.
2. **Precise Semantics.** Yes.
3. **Familiarity.** Yes.
4. **Faithfulness.** Moderate.
5. **Theoretical Expressivity.** High.
6. **Practical Expressivity.** Moderate.
7. **Multiparadigm Reasoning.** Functions and sets.
8. **Metalogical Reasoning.** No.
9. **Axiomatizability.** Yes.
10. **Implementability.** Yes.

Ways of Making STT More Practical

- Make the logic **many-sorted** by allowing several types of individuals, e.g., ι_1, \dots, ι_n .
- Add machinery for basic mathematical objects such as **sets**, **tuples**, and **lists**.
- Add **indefinite description**.
- Modify the semantics of STT to admit **undefined expressions** and **partial functions**.
- Admit **polymorphic operators** like $(\lambda x : t . x)$ and **user-defined type constructors** by introducing **type variables**.
- Extend the type system of STT to support **subtypes** and **dependent types**.

Proof Assistants Based on Variants of STT

- HOL (Gordon).
- HOL Light (Harrison).
- IMPS (Farmer, Guttman, Thayer).
- Isabelle/HOL (Paulson).
- ProofPower (Lemma 1).
- PVS (Owre, Rushby, Shankar).
- TPS (Andrews).

Conclusion

- Simple type theory is a logic that is effective for practice as well as theory—unlike first-order logic.
 - ▶ More expressive and more convenient.
 - ▶ Closer to mathematical practice.
 - ▶ Based on the same principles as first-order logic.
 - ▶ Includes the full machinery of first-order logic.
 - ▶ Integrates predicate logic, function theory, and type theory.
- We recommend that simple type theory be incorporated into:
 - ▶ Logic courses offered by mathematics departments.
 - ▶ The undergraduate curriculum for computer science and software engineering students.

The Seven Virtues

Virtue 1: STT has a simple and highly uniform syntax.

Virtue 2: The semantics of STT is based on a small collection of well-established ideas.

Virtue 3: STT is a highly expressive logic.

Virtue 4: STT admits categorical theories of infinite structures.

Virtue 5: There is a proof system for STT that is simple, elegant, and powerful.

Virtue 6: Henkin's general models semantics enables the techniques of first-order model theory to be applied to STT and illuminates the distinction between standard and nonstandard models.

Virtue 7: There are practical variants of STT that can be effectively implemented.

References: Key Historical Publications

1. B. Russell, “Mathematical Logic as Based on the Theory of types”, *American Journal of Mathematics*, 30:222–262, 1908.
2. A. N. Whitehead and B. Russell, *Principia Mathematica*, Cambridge University Press, 1910–13.
3. A. Church, “A Formulation of the Simple Theory of Types”, *Journal of Symbolic Logic*, 5:56–68, 1940.
4. L. Henkin, “Completeness in the Theory of Types”, *Journal of Symbolic Logic*, 15:81–91, 1950.
5. L. Henkin, “A Theory of Propositional Types”, *Fundamenta Mathematicae*, 52:323–344, 1963.
6. P. B. Andrews, “A Reduction of the Axioms for the Theory of Propositional Types”, *Fundamenta Mathematicae* 52:345–350, 1963.

References: Introductions

1. P. B. Andrews, *An Introduction to Mathematical Logic and Type Theory: To Truth through Proof*, Second Edition, Kluwer, 2002.
2. P. B. Andrews, “Church’s Type Theory”, in: E. N. Zalta, ed., *The Stanford Encyclopedia of Philosophy*, Spring 2009.
3. W. M. Farmer, “A basic extended simple type theory”, SQRL Report No. 14, 12 pp., McMaster University, 2003 (revised 2004).
4. W. M. Farmer, “The Seven Virtues of Simple Type Theory”, *Journal of Applied Logic* 6:267–286, 2008.