
CAS 734 Winter 2014

04 Simple Type Theory

William M. Farmer

Department of Computing and Software
McMaster University

18 January 2014



Type Theory

Russell introduced a logic now known as the ramified
theory of types in 1908 to serve as a foundation for
mathematics.

I Included a hierarchy of types to avoid set-theoretic
paradoxes such Russell’s paradox and semantic
paradoxes such as Richard’s paradox.

I Employed as the logic of Whitehead and Russell’s
Principia Mathematica.

I Not used today due to its high complexity.

Chwistek and Ramsey suggested in the 1920s a simplified
version of the ramified theory of types called the simple
theory of types or, more briefly, simple type theory.

Church published in 1940 a formulation of simple type
theory with lambda-notation and lambda-conversion.
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Intuitionistic Type Theory

Several intuitionistic or constructive type theories have
been developed.

Examples:

I Martin-Löf’s Intuitionistic Type Theory (1980).
I Coquand and Huet’s Calculus of Constructions (1984).

Many intuitionistic type theories exploit the Curry-Howard
Formulas-as-Types Isomorphism.

I Formulas serve as types or specifications.
I Terms serve as proofs or programs.
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What is Simple Type Theory?

A simple, elegant, highly expressive, and practical logic.

I Familiar to some computer scientists but not to many
mathematicians, engineers, and other scientists.

Most popular form of type theory.

I Types are used to classify expressions by value and
control the formation of expressions.

I Classical: nonconstructive, 2-valued.
I Higher order: quantification over functions.
I Can be viewed as a “function theory”.

Natural extension of first-order logic.

I Based on the same principles as first-order logic.
I Includes nth-order logic for all n ≥ 1.
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Who needs Simple Type Theory?

An understanding of simple type would be beneficial to anyone
who needs to work with or apply mathematical logic. This is
particularly true for:

Engineers who need to write (and read) precise
specifications.

Computer scientists who employ functional programming
languages such as Lisp, ML, and Haskell.

Software engineers who use higher-order theorem proving
systems to model and analyze software systems.

Mathematics students who are studying the foundations
of mathematics or model theory.

W. M. Farmer CAS 734 Winter 2014: 04 Simple Type Theory 5/31



Purpose of this Presentation

Present a pure form of simple type theory named STT.

Show the virtues of simple type theory using STT.

Argue that simple type theory is an attractive alternative
to first-order logic for practical-minded scientists,
engineers, and mathematicians.
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History
1908 Russell

Ramified theory of types.
1910 Russell, Whitehead

Principia Mathematica.
1920s Chwistek, Ramsey

Simple theory of types (simple type theory).
1920–30s Carnap, Gödel, Tarski, Quine

Detailed formulations of simple type theory.
1940 Church

Simple type theory with lambda-notation.
1950 Henkin

General models and completeness theorem.
1963 Henkin, Andrews

Concise formulation based on equality.
1980-90s HOL, IMPS, Isabelle, ProofPower, PVS, TPS

Higher-order theorem proving systems.
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Syntax of STT: Types

A type of STT is defined by the following rules:

T1
type[ι]

(Type of individuals)

T2
type[∗]

(Type of truth values)

T3
type[α], type[β]

type[(α→ β)]
(Function type)

Let T denote the set of types of STT.
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Syntax of STT: Symbols

The logical symbols of STT are:

I Function application: @ (hidden).
I Function abstraction: λ.
I Equality: =.
I Definite description: I (capital iota).
I An infinite set V of symbols called variables.

A language of STT is a pair L = (C, τ) where:

I C is a set of symbols called constants.
I τ : C → T is a total function.
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Syntax of STT: Expressions
An expression E of type α of a STT language L = (C, τ)
is defined by the following rules:

E1
x ∈ V, type[α]

exprL[(x : α), α]
(Variable)

E2
c ∈ C

exprL[c , τ(c)]
(Constant)

E3
exprL[A, α], exprL[F , (α→ β)]

exprL[F (A), β]
(Application)

E4
x ∈ V, type[α], exprL[B, β]

exprL[(λ x : α . B), (α→ β)]
(Abstraction)

E5
exprL[E1, α], exprL[E2, α]

exprL[(E1 = E2), ∗]
(Equality)

E6
x ∈ V, type[α], exprL[A, ∗]

exprL[(I x : α . A), α]
(Definite description)
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Syntax of STT: Conventions

Eα denotes an expression E of type α.

Parentheses and the types of variables may be dropped
when meaning is not lost.
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Semantics of STT: Standard Models

A standard model for a language L = (C, τ) of STT is a
triple M = (D, I , e) where:

I D = {Dα : α ∈ T } is a set of nonempty domains (sets).
I D∗ = {t, f}, the domain of truth values.
I Dα→β is the set of all functions from Dα to Dβ.
I I maps each c ∈ C to an element of Dτ(c).
I e maps each α ∈ T to a member of Dα.

A variable assignment into M is a function that maps
each expression (x : α) to an element of Dα.

Given a variable assignment ϕ into M , an expression
(x : α), and d ∈ Dα, let ϕ[(x : α) 7→ d ] be the variable
assignment ϕ′ into M such that ϕ′((x : α)) = d and
ϕ′(v) = ϕ(v) for all v 6= (x : α).
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Semantics of STT: Valuation Function

The valuation function for a standard model M = (D, I , e) for
a language L = (C, τ) of STT is the binary function V M that
satisfies the following conditions for all variable assignments ϕ
into M and all expressions E of L:

1. Let E is (x : α). Then V M
ϕ (E ) = ϕ((x : α)).

2. Let E ∈ C. Then V M
ϕ (E ) = I (E ).

3. Let E be F (A). Then V M
ϕ (E ) = V M

ϕ (F )(V M
ϕ (A)).

4. Let E be (λ x : α . Bβ). Then V M
ϕ (E ) is the f : Dα → Dβ

such that, for each d ∈ Dα, f (d) = V M
ϕ[(x :α)7→d ](Bβ).

5. Let E be (E1 = E2). If V M
ϕ (E1) = V M

ϕ (E2), then
V M
ϕ (E ) = t; otherwise V M

ϕ (E ) = f.

6. Let E be (I x : α . A). If there is a unique d ∈ Dα such
that V M

ϕ[(x :α)7→d ](A) = t, then V M
ϕ (E ) = d ; otherwise

V M
ϕ (E ) = e(α).
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Notational Definitions

T means (λ x : ∗ . x) = (λ x : ∗ . x).
F means (λ x : ∗ . T) = (λ x : ∗ . x).
(¬A∗) means A∗ = F.
(Aα 6= Bα) means ¬(Aα = Bα).
(A∗ ∧ B∗) means (λ f : ∗ → (∗ → ∗) . f (T)(T)) =

(λ f : ∗ → (∗ → ∗) . f (A∗)(B∗)).
(A∗ ∨ B∗) means ¬(¬A∗ ∧ ¬B∗).
(A∗ ⇒ B∗) means ¬A∗ ∨ B∗.
(A∗ ⇔ B∗) means A∗ = B∗.
(∀ x : α . A∗) means (λ x : α . A∗) = (λ x : α . T).
(∃ x : α . A∗) means ¬(∀ x : α . ¬A∗).
⊥α means I x : α . x 6= x .
if(A∗,Bα,Cα) means I x : α . (A∗ ⇒ x = Bα) ∧

(¬A∗ ⇒ x = Cα)
where x does not occur in A∗, Bα, or Cα
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Expressivity

Theorem. There is a faithful interpretation of nth-order
logic in STT for all n ≥ 1.

Most mathematical notions can be directly and naturally
expressed in STT.

Examples:

equiv-rel =
λ p : (ι→ (ι→ ∗)) .
∀ x : ι . p(x)(x) ∧
∀ x , y : ι . p(x)(y)⇒ p(y)(x) ∧
∀ x , y , z : ι . (p(x)(y) ∧ p(y)(z))⇒ p(x)(z)

compose =
λ f : (ι→ ι) . λ g : (ι→ ι) . λ x : ι . f (g(x))

inv-image =
λ f : (ι→ ι) . λ s : (ι→ ∗) .
I s ′ : (ι→ ∗) . ∀ x : ι . s ′(x)⇔ s(f (x))
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Peano Arithmetic

Let PA = (L, Γ) be the theory of STT such that:
L = ({0, S}, τ) where τ(0) = ι and τ(S) = ι→ ι.
Γ is the set of the following three formulas:

1. 0 has no predecessor: ∀ x : ι . 0 6= S(x).
2. S is injective: ∀ x , y : ι . S(x) = S(y)⇒ x = y .
3. Induction principle:
∀P : ι→ ∗ .

P(0) ∧ (∀ x : ι . P(x)⇒ P(S(x)))⇒ ∀ x : ι . P(x).

Theorem (Dedekind, 1888). PA has (up to isomorphism)
a unique standard model M = (D, I , e)
where Dι = {0, 1, 2, . . .}.
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Complete Ordered Field (1/3)

Let COF = (L, Γ) be the theory of STT such that:
L = ({+, 0,−, ·, 1, −1, pos, <,≤, ub, lub}, τ) where

Constant c Type τ(c)
0,1 ι
−, −1 ι→ ι
pos ι→ ∗
+, · ι→ (ι→ ι)
<,≤ ι→ (ι→ ∗)

ub, lub ι→ ((ι→ ∗)→ ∗)
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Complete Ordered Field (2/3)

Γ is the set of the following eighteen formulas:

1. ∀ x , y , z : ι . (x + y) + z = x + (y + z).
2. ∀ x , y : ι . x + y = y + x .
3. ∀ x : ι . x + 0 = x .
4. ∀ x : ι . x + (−x) = 0.
5. ∀ x , y , z : ι . (x · y) · z = x · (y · z).
6. ∀ x , y : ι . x · y = y · x .
7. ∀ x : ι . x · 1 = x .
8. ∀ x : ι . x 6= 0⇒ x · x−1 = 1.
9. 0 6= 1.

10. ∀ x , y , z : ι . x · (y + z) = (x · y) + (x · z).
11. ∀ x : ι . (x = 0 ∧ ¬pos(x) ∧ ¬pos(−x)) ∨

(x 6= 0 ∧ pos(x) ∧ ¬pos(−x)) ∨
(x 6= 0 ∧ ¬pos(x) ∧ pos(−x)).

W. M. Farmer CAS 734 Winter 2014: 04 Simple Type Theory 18/31



Complete Ordered Field (3/3)
12. ∀ x , y : ι . (pos(x) ∧ pos(y))⇒ pos(x + y).
13. ∀ x , y : ι . (pos(x) ∧ pos(y))⇒ pos(x · y).
14. ∀ x , y : ι . x < y ⇔ pos(y − x).
15. ∀ x , y : ι . x ≤ y ⇔ (x < y ∨ x = y).
16. ∀ x : ι . ∀ s : ι→ ∗ . ub(x)(s) = ∀ y : ι . s(y)⇒ y ≤ x .
17. ∀ x : ι . ∀ s : ι→ ∗ .

lub(x)(s) = (ub(x)(s)∧ (∀ y : ι . ub(y)(s)⇒ x ≤ y)).
18. ∀ s : ι→ ∗ .

∃ x : ι . s(x) ∧ ∃ x : ι . ub(x)(s)⇒ ∃ x : ι . lub(x)(s).

Theorem. COF has (up to isomorphism) a unique
standard model M = (D, I , e) where Dι = R, the set of
real numbers.
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Incompleteness of STT

Theorem. There is no sound and complete proof system
for STT.

Proof. Suppose P is a sound and complete proof system
for STT. By the soundness of P and Gödel’s
Incompleteness Theorem, there is a sentence A such that
(1) M |= A, where M is the unique standard model for
PA (up to isomorphism), and (2) PA 6`P A. By the
completeness of P, (2) implies PA 6|= A and hence
M 6|= A since M is the only standard model of PA, which
contradicts (1). �
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A Hilbert-Style Proof System for STT (1/2)

Axioms:

A1 (Truth Values)
∀ f : ∗ → ∗ . (f (T∗) ∧ f (F∗))⇔ (∀ x : ∗ . f (x)).

A2 (Leibniz’ Law)
∀ x , y : α . (x = y)⇒ (∀ p : α→ ∗ . p(x)⇔ p(y)).

A3 (Extensionality)
∀ f , g : α→ β . (f = g) = (∀ x : α . f (x) = g(x)).

A4 (Beta-Reduction)
(λ x : α . Bβ)(Aα) = Bβ[(x : α) 7→ Aα]

provided Aα is free for x in Bβ.
A5 (Proper Definite Description)

(∃ ! x : α . A)⇒ A[(x : α) 7→ (I x : α . A)].
A6 (Improper Definite Description)
¬(∃ ! x : α . A)⇒ (I x : α . A) = ⊥α.
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A Hilbert-Style Proof System for STT (2/2)

Rule of inference:

R (Equality Substitution)
From Aα = Bα and C∗ infer the result of replacing one
occurrence of Aα in C∗ by an occurrence of Bα.

Call this proof system A.

I Due to Andrews, 1963.

Theorem (Jensen, 1969). A plus an axiom of infinity is
equiconsistent with bounded Zermelo set theory.
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General Models

A general structure for a language L = (C, τ) of STT is a
triple M = (D, I , e) where:

I D = {Dα : α ∈ T } is a set of nonempty domains (sets).
I D∗ = {t, f}, the domain of truth values.
I Dα→β is some set of functions from Dα to Dβ.
I I maps each c ∈ C to an element of Dτ(c).
I e maps each α ∈ T to a member of Dα.

M is a general model for L if there is a binary function
V M that satisfies the same conditions as the valuation
function for a standard model.

A general model is a nonstandard model if it is not a
standard model.
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Completeness of STT

Theorem (Henkin, 1950). There is a sound and complete
proof system for STT with respect to general models.

Corollary. STT is compact with respect to general
models.

Theorem (Andrews, 1963). A is a sound and complete
proof system for STT with respect to general models.
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Attributes of a Practical Logic: STT

1. Formal Syntax. Yes.

2. Precise Semantics. Yes.

3. Familiarity. Yes.

4. Faithfulness. Moderate.

5. Theoretical Expressivity. High.

6. Practical Expressivity. Moderate.

7. Multiparadigm Reasoning. Functions and sets.

8. Metalogical Reasoning. No.

9. Axiomatizability. Yes.

10. Implementability. Yes.
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Ways of Making STT More Practical

Make the logic many-sorted by allowing several types of
individuals, e.g., ι1, . . . , ιn.

Add machinery for basic mathematical objects such as
sets, tuples, and lists.

Add indefinite description.

Modify the semantics of STT to admit undefined
expressions and partial functions.

Admit polymorphic operators like (λ x : t . x) and
user-defined type constructors by introducing type
variables.

Extend the type system of STT to support subtypes and
dependent types.
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Proof Assistants Based on Variants of STT

HOL (Gordon).

HOL Light (Harrison).

IMPS (Farmer, Guttman, Thayer).

Isabelle/HOL (Paulson).

ProofPower (Lemma 1).

PVS (Owre, Rushby, Shankar).

TPS (Andrews).
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Conclusion
Simple type theory is a logic that is effective for practice
as well as theory—unlike first-order logic.

I More expressive and more convenient.
I Closer to mathematical practice.
I Based on the same principles as first-order logic.
I Includes the full machinery of first-order logic.
I Integrates predicate logic, function theory, and type

theory.

We recommend that simple type theory be incorporated
into:

I Logic courses offered by mathematics departments.
I The undergraduate curriculum for computer science and

software engineering students.
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The Seven Virtues

Virtue 1: STT has a simple and highly uniform syntax.

Virtue 2: The semantics of STT is based on a small
collection of well-established ideas.

Virtue 3: STT is a highly expressive logic.

Virtue 4: STT admits categorical theories of infinite
structures.

Virtue 5: There is a proof system for STT that is simple,
elegant, and powerful.

Virtue 6: Henkin’s general models semantics enables the
techniques of first-order model theory to be applied to
STT and illuminates the distinction between standard and
nonstandard models.

Virtue 7: There are practical variants of STT that can be
effectively implemented.
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