
CAS 734 Winter 2014

07 Practice-Oriented Logics

William M. Farmer

Department of Computing and Software
McMaster University

22 February 2014



Theory-Oriented vs. Practice-Oriented Logics

Most traditional logics are theory oriented: they are
designed to be studied and used only for theoretical
purposes.

I Examples: First-order logic, Zermelo-Fraenkel set theory.

A practice-oriented logic is intended for actual use in
practice by engineers, scientists, mathematicians, and
students.

I Often are modifications of traditional logics.
I Examples: Versions of Church’s type theory used in the

HOL, IMPS, PVS, and TPS systems.

The logic of a proof assistant needs to be practice
oriented.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 2/22



Expressivity of a Logic

The theoretical expressivity of a logic is the measure of
what ideas can be expressed in the logic without regard to
how the ideas are expressed.

The practical expressivity of a logic is the measure of how
readily ideas can be expressed in the logic.

A good practice-oriented logic should have both high
theoretical and practical expressivity.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 3/22



Issues concerning Practicality in a Logic

1. Basic mathematical values.

2. Types.

3. Undefinedness.

4. Polymorphism.

5. Definite and indefinite description.

6. Syntactic values.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 4/22



Issue 1: Basic Mathematical Objects
A practice-oriented logic needs strong support for the basic
mathematical objects:

Truth values.

Strings.

Numbers:
I Natural numbers.
I Integers.
I Rational numbers.
I Real numbers.
I Complex numbers.

Compound values:
I Sets.
I Functions.
I Relations.
I Tuples.
I Sequences.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 5/22



Support for Basic Mathematical Objects

Literals for strings and numbers.

Types.

Quantification.

Abstraction mechanisms (e.g., lambda-abstraction).

Subtyping for numbers.

Way of handling improper function application.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 6/22



Issue 2: Types

The use of types can make a logic much more practical
than it would otherwise be.

Types can be used in a logic to:

1. Restrict the scope of variables.
2. Restrict the scope of operators.
3. Control the formation of expressions.
4. Classify expressions by their values.

In mathematical practice, types are informal and used
mainly for restricting the scope of variables.

Important issues:

I How is type checking performed?
I Can types be hidden?
I Can types be inferred?
I Is type checking/inference decidable?

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 7/22



Type Systems

Possible components of a type system:

I Type constants including base types.
I Type constructors like α→ β and α× β.
I Dependent function (product) type constructor:

Π x : α . β.
I Dependent pair (sum) type constructor:

Σ x : α . β.
I A universal type.
I Possibly empty types.
I Type variables.
I Subtypes.

Implementation approaches:

I The type system is built into the logic.
I The type system is simulated using predicates.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 8/22



Issue 3: Undefinedness

A mathematical term is undefined if it has no prescribed
meaning or if it denotes a value that does not exist.

I Undefined terms are commonplace in mathematics.

Sources of undefinedness:

1. Improper function applications:
√
−4.

2. Improper definite descriptions:

“the x such that x2 = 4”.

3. Improper indefinite descriptions:

“some x such x2 = −4”.

A practice-oriented logic needs a way of handling
undefinedness:

I Ill-formed terms
I Unspecified values
I Error values
I Traditional approach to undefinedness

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 9/22



Issue 4: Polymorphism

An operator is polymorphic if it can be applied to
expressions of different types.

Polymorphic operators are not usually needed in
mathematical practice since, by convention, operators can
be applied to all expressions (but the applications may be
undefined).

A practice-oriented logic needs polymorphic operators in
some form:

I Type variables.
I Macro-abbreviations.
I All values are members of a universal class.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 10/22



Issue 5: Definite and Indefinite Description

A definite description is an expression of the form “the x
such that A” written formally as ι x . A.

An indefinite description is an expression of the form
“some x such that A” written formally as ε x . A.

Definite descriptions, and to a less extent indefinite
descriptions, are quite common in mathematical practice,
but they often occur in a disguised form.

Improper definite and indefinite descriptions are
undefined.

A practice-oriented logic needs either definite description
or indefinite description.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 11/22



Issue 6: Syntactic Values

An expression has two meanings:

1. The value it denotes.
2. Its syntactic structure.

Both meanings are important in mathematics, but the
distinction between them is often confused.

A practice-oriented logic needs to be able to reason about
both meanings of an expression.

Important issues:

I How is the liar paradox avoided?
I How are expression fragments handled?
I How are the notions of a free variable, substitution for a

variable, etc. defined?

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 12/22



Syntax Framework

A syntax framework is an abstract model of a system for
reasoning about the syntax of an interpreted language L.

A syntax framework contains:

1. A syntax representation that maps each expression e in
L to a syntactic value that represents the syntactic
structures of e.

2. A language Lsyn called a syntax language whose
expressions denote syntactic values.

3. A quotation function that maps an expression e in L to
an expression peq in the syntax language Lsyn that
denotes the syntactic value of e.

4. An evaluation function that maps an expression e in Lsyn
to an expression JeK in L whose semantic value is the
same as that of the expression in L whose syntactic
value is denoted by e.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 13/22



Candidates for a Practice-Oriented Logic

Higher-order logics.

I Simple type theory.
I Extensions of simple type theory.
I Constructive type theories.

Set theories.

I Zermelo-Fraenkel (ZF) set theory.
I Von-Neumann-Bernays-Gödel (NBG) set theory.

Note: First-order logic is not good candidate for a
practice-oriented logic.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 14/22



Type Theory

Russell introduced a logic now known as the ramified
theory of types in 1908 to serve as a foundation for
mathematics.

I Included a hierarchy of types to avoid set-theoretic
paradoxes such Russell’s Paradox and semantic
paradoxes such as Richard’s paradox.

I Employed as the logic of Whitehead and Russell’s
Principia Mathematica.

I Not used today due to its high complexity.

Chwistek and Ramsey suggested in the 1920s a simplified
version of the ramified theory of types called the simple
theory of types or, more briefly, simple theory theory.

Church published in 1940 a formulation of simple theory
theory with lambda-notation and lambda-conversion.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 15/22



Intuitionistic Type Theory

Several intuitionistic or constructive type theories have
been developed.

Examples:

I Martin-Löf’s Intuitionistic Type Theory (1980).
I Coquand and Huet’s Calculus of Constructions (1984).

Many intuitionistic type theories exploit the Curry-Howard
Formulas-as-Types Isomorphism.

I Formulas serve as types or specifications.
I Terms serve as proofs or programs.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 16/22



Formalizations of Set Theory

The standard formalization of set theory is known as
Zermelo-Fraenkel (ZF) set theory [Zermelo, 1908].

Other major formalizations:

I von-Neumann-Bernays-Gödel (NBG) set theory [von
Neumann, 1925].

I Morse-Kelley (MK) set theory [Kelley, 1955].
I Tarski-Grothendieck set theory [Tarski, 1938].
I New Foundations (NF) [Quine, 1937].

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 17/22



ZF

Proposed by Zermelo in 1908.

I Developed to avoid the set-theoretic paradoxes.
I Improvements made by Fraenkel (1922) and Skolem

(1923).

ZF is formalized as a theory in first-order logic.

I Language contains two predicate symbols = and ∈.
I Not finitely axiomatizable.

Proper classes (e.g., the collection of all sets) are not
first-class objects.

I They cannot be denoted by terms.
I They are used in the metatheory.
I They can be denoted by predicate symbols.

ZF is an exceedingly rich theory.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 18/22



Axioms of ZF

1. Extensionality.

2. Foundation.

3. Comprehension scheme.

4. Pairing.

5. Union.

6. Replacement scheme.

7. Powerset.

8. Infinity.

9. Choice.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 19/22



NBG

Proposed by von Neumann in 1925.

I Improvements made by R. Robinson (1937), Bernays
(1937–54), and Gödel (1940).

NBG is formalized as a theory in first-order logic.

I Has the same language as ZF.
I Finitely axiomatizable.

Proper classes are first-class objects.

NBG is closely related to ZF.

I NBG is consistent iff ZF is consistent.
I NBG and ZF share the same intuitive model of the

iterated hierarchy of sets.
I NBG and ZF have very similar axioms.

W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 20/22



Some Proposed Practice-Oriented Logics

LUTINS, the IMPS logic.

I Version of Church’s type theory with undefinedness and
a subtype system.

I Addresses issues 1,2,3,5.

BESTT, a Basic Extended Simple Type Theory.

I Version of Church’s type theory with undefinedness,
tuples, lists, and sets.

I Addresses issues 1–5.

STMM, a Set Theory for Mechanized Mathematics.

I Version of NBG set theory with types and undefinedness.
I Addresses issues 1–5.

Chiron.

I Version of NBG set theory with types, undefinedness,
quotation, and evaluation.

I Addresses issues 1–6.
W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 21/22



Advantages Chiron has over NBG
Types.

I Has types as well as terms and formulas.
I Types are assigned to terms.
I Type system includes a universal type, type constructors,

dependent function types, dependent pair types, possibly
empty types, and subtypes.

Operators.
I Generalize function and predicate symbols.
I Work with types, terms, formulas.

Function application and abstraction.

Undefinedness.
I Follows the traditional approach to undefinedness.
I Separate kinds of undefinedness for types, terms,

formulas.

Definite and indefinite description.

Quotation and evaluation.
W. M. Farmer CAS 734 Winter 2014: 07 Practice-Oriented Logics 22/22


