A Brief Overview of PVS

Qian Hu, M.Sc

CAS 760
Instructor: Dr. W. M. Farmer
McMaster University

March 31, 2010



A brief overview of PVS

Presentation Outline

e Overview
e Introduction to PVS

» PVS — system and its logic
» The PVS specification language

> PVS prover
e Demo
e Conclusion
e References



Overview

PVS

PVS: Prototype Verification System
http://pvs.csl.sri.com

Specification and verification system consisting of:
Formal specification language.
Model checker.
Theorem prover.

Documentation, administrative tools etc.

PVS is a large and complex system



A brief overview of PVS

PVS - The System and Its Logic




PVS — The system and its logic

PVS System

PVS: the system

Implemented in LISP (more than 50.000 lines).
Theories written and edited Iin text files (*.pvs).

Proofs created interactively and saved as LISP

data-structure (*.prf).




PVS — The system and its logic

PVS Logic

PVS: the logic

Based on extensions to typed — Acalculus

and classical, typed higher-order logic.
EX. (FORALL (x:list): rev(rev(x))=x)

Extensions allow for subset types.

Unlike Coqg, PVS is not based on Constructive Type
Theories.

And PVS does not have small kernel (de Bruijn principle).



A brief overview of PVS

The PVS Specification Language




The PVS Specification Language

PVS Types

Type variables: T : Type, T : Type+.
Base types: bool, nat, real,etc. New basic types may be
Introduced by users

- Abstract data-types: Stack, List, Tree.

Function types(may be dependent): [n:nat, m: {n: nat |
n/=0}->{rnat | r<m}].

Enumeration types: {red, green, blue}.

Tuple types(may be dependent): [n:nat, {m:nat |
m<=n}].

Dependent record types: [# n:nat, m : {k:nat | k<=n} #].
Subset types: {i : nat | I > 1}.

Subset types are peculiar to PVS, and do not exist in for
Instance Coqg.



The PVS Specification Language

PVS Expressions

Basic expressions:
TRUE : bool 0,23 +5,17 10 :int

Function abstraction and application:

(LAMBDA (i, ] : nat) : i +)) : [nat, nat -> nat] f(i, |)

Logic:

AND, OR, NOT, IMPLIES, IFF, =,/ =, FORALL, EXISTS

Conditionals:
IF ¢ THEN el ELSE e2 ENDIF

Records:
rc: [#a, b:int#]
re:[#a,b:int# =rc WITH [‘a := 0]

Subtypes:
Interval(m, n:int) : TYPE ={i : int | m <=1 <=n}
[:[int, {n :int| n/ =0} ->int]



The PVS Specification Language

PVS Recursive Definitions
Lambda cannot be used for recursion
Only named functions allow recursion

All recursive functions must be shown to terminate by
supplying a measure function.

No mutual recursion




The PVS Specification Language

PVS Recursive Definitions

sum(n: nat): RECURSIVE nat =
(IF n=0 THEN 0 ELSE n+sum(n-1)
MEASURE n

ENDIF")

sum is only well typed if:
for type-consistency: IFn/=0THENn-1>=0
for termination (measure decreases): IFn/=0THEN n-1<n

Such conditions are called TCCs (Type Checking Conditions).
They:

are generated for recursive definitions and subtypes and

most of them can be automatically discarded by PVS.

Type-checking in PVS is not decidable!



The PVS Specification Language

PVS Theories

« PVS developments are organized in to theories
« Theories can be parameterized
« Prelude contains a number of predefined theories

Main language elements

Declarations
> Types
> Constants

Expressions over these types

Expressions of Boolean types may be a formula
Formulae are theorems or axioms

Declarations and formulae are grouped into theories



The PVS Specification Language

PVS Theories

class theory: THEORY BEGIN

my type: NONEMPTY TYPE

constantl, constantZ2: my type

f1: THEOREM
FORALL (a, b: integer): atb=b+ta

f2: AXIOM
constantl=constant?

END class theory



The PVS Specification Language

PVS Theories

class theory: THEORY BEGIN
my type: NONEMPTY TYPE
constantl, constantZ2: my type

f1: THEOREM
FORALL (a, b: integer): atb=b+ta

f2: AXIOM
constantl=constant?

END class theory



The PVS Specification Language

PVS Theories

class theory: THEORY BEGIN
my type: NONEMPTY TYPE
constantl, constantZ2: my type

fl: THEOREM
FORALL (a, b: integer): atb=b+ta

f2: AXIOM
constantl=constant?

END class theory



A brief overview of PVS

PVS Prover




PVS Prover

Once we have defined — and type-checked! — a theory, we
can prove any lemmas and theorems it contains.

Lemmas can be done in any order; PVS keeps track of
what has been proved.

Proving is done interactively, by the user giving commands,
tactics, to the PVS prover.




PVS Prover

PVS Sequents

PVS proof obligations are sequents of the form

-1]

P

Intuitive meaning: (P AND Q AND R)=>(SORT)
negatively numbered ancedents/assumptions above

line,

positively numbered consequents/goals below line

PVS maintains a proof tree of such sequents.



PVS Prover

Tactics

There are many tactics, and you can define additional ones
yourself.

A full list is included in the ‘PVS Prover Guide’.

Coq EAVAS

Intro, intros (flatten), (skolem!)

apply (lemma), (use)

unfold (expand)

simpl (beta), (simplify)

induction (induct), (induction-and-simplify)
auto, tauto (grind), (prop), (asser)

rewrite (rewrite), (replace)

Undo (undo)



A brief overview of PVS

Demo




PVS Prover

Hints for Complicated Proofs

- Try to understand what the assumptions/goals mean

This is often the bottleneck in verifications; ugly PVS syntax can be
hard to read

- Which instantiations of assumptions are useful ?
- Which lemmas might be useful?

- Carefully expand definitions
Too much expansion makes things unreadable

- Which case distinctions are useful ?

Many useful case-distinctions can be made by expanding definition,
lift-ifing and spliting



A brief overview of PVS

Conclusion

PVS is a very general tool

Still a BIG step from being formal with pencil & paper
to being formal in theorem prover

Specification is easy, verification is difficult

But, errors often exposed during specification, not
verification

Mainly for experts on critical applications and
academics



A brief overview of PVS

References

» PVS homepage: http://pvs.csl.sri.com

» A Tutorial Introduction to PVS
J.Crow, S.Ower, J.M.Rushby, SRI International, 1995

» PVS Bibliography
John Rushby, SRI International, 1999

» PVS: A Prototype Verification System
S.Ower, J.M.Rushby, N.Shankar, SRI International, 1992

» PVS: Combing Specification, Proof Checking, and Model

Checking
S.Ower, S.Rajan, J.M.Rushby, N.Shankar, 1996

» Subtypes for Specifications: Predicate Subtyping in PVS
J.M.Rushby, S.Ower, N.Shankar, 1998



A brief overview of PVS

?
Question




The End
Thank You!




