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Overview

Specification and verification system consisting of:

• Formal specification language.

• Model checker.

• Theorem prover.

• Documentation, administrative tools etc.

PVS is a large and complex system

PVS

PVS: Prototype Verification System

http://pvs.csl.sri.com
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PVS – The system and its logic

PVS System

PVS: the system

• Implemented in LISP (more than 50.000 lines).

• Theories written and edited in text files (*.pvs).

• Proofs created interactively and saved as LISP

• data-structure (*.prf).
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PVS – The system and its logic

PVS Logic

PVS: the logic

• Based on extensions to typed – calculus

• and classical, typed higher-order logic.
EX. (FORALL (x:list): rev(rev(x))=x)

• Extensions allow for subset types.

Unlike Coq, PVS is not based on Constructive Type

Theories.

And PVS does not have small kernel (de Bruijn principle).
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The PVS Specification Language

PVS Types

• Type variables: T : Type, T : Type+.

• Base types: bool, nat, real,etc. New basic types may be 

introduced by users

• Abstract data-types: Stack, List, Tree.

• Function types(may be dependent): [n:nat, m: {n: nat | 

n /= 0} -> {r:nat | r<m}].

• Enumeration types: {red, green, blue}.

• Tuple types(may be dependent): [n:nat, {m:nat | 

m<=n}].

• Dependent record types: [# n:nat, m : {k:nat | k<=n} #].

• Subset types: {i : nat | i > 1}.

Subset types are peculiar to PVS, and do not exist in for

instance Coq.
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The PVS Specification Language

PVS Expressions

• Basic expressions:

TRUE : bool 0, 23 + 5, 17  10 : int

• Function abstraction and application:

(LAMBDA (i, j : nat) : i + j) : [nat, nat -> nat] f(i, j)

• Logic:
AND, OR, NOT, IMPLIES, IFF, =, / =, FORALL, EXISTS

• Conditionals:
IF c THEN e1 ELSE e2 ENDIF

• Records:
rc: [# a, b : int #]

re: [# a, b : int #] = rc WITH [‘a := 0]

• Subtypes:
Interval(m, n : int) : TYPE = {i : int | m <= i <= n} 

/ : [int, {n : int | n/ = 0} -> int]
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The PVS Specification Language

PVS Recursive Definitions

• Lambda cannot be used for recursion

• Only named functions allow recursion

• All recursive functions must be shown to terminate by 

supplying a measure function.

• No mutual recursion



The PVS Specification Language

PVS Recursive Definitions

sum is only well typed if:

• for type-consistency: IF n/ = 0 THEN n − 1 >= 0

• for termination (measure decreases): IF n/ = 0 THEN n − 1 < n

Such conditions are called TCCs (Type Checking Conditions).

They:

• are generated for recursive definitions and subtypes and

• most of them can be automatically discarded by PVS.

Type-checking in PVS is not decidable!
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sum(n: nat): RECURSIVE nat =

(IF n=0 THEN 0 ELSE n+sum(n-1) ENDIF)

MEASURE n Used to prove 

that the function 

is total
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The PVS Specification Language

PVS Theories

 PVS developments are organized in to theories

 Theories can be parameterized

 Prelude contains a number of predefined theories

Main language elements

• Declarations
 Types

 Constants

• Expressions over these types

• Expressions of Boolean types may be a formula

• Formulae are theorems or axioms

• Declarations and formulae are grouped into theories
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The PVS Specification Language

PVS Theories

class_theory: THEORY BEGIN

my_type: NONEMPTY_TYPE

constant1, constant2: my_type

f1: THEOREM

FORALL (a, b: integer): a+b=b+a

f2: AXIOM

constant1=constant2

END class_theory

Type

Declarations

Expressions
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The PVS Specification Language

PVS Theories

Formulae

class_theory: THEORY BEGIN

my_type: NONEMPTY_TYPE

constant1, constant2: my_type

f1: THEOREM

FORALL (a, b: integer): a+b=b+a

f2: AXIOM

constant1=constant2

END class_theory
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The PVS Specification Language

PVS Theories

class_theory: THEORY BEGIN

my_type: NONEMPTY_TYPE

constant1, constant2: my_type

f1: THEOREM

FORALL (a, b: integer): a+b=b+a

f2: AXIOM

constant1=constant2

END class_theory

Declarations
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PVS Prover

Once we have defined – and type-checked! – a theory, we

can prove any lemmas and theorems it contains.

Lemmas can be done in any order; PVS keeps track of

what has been proved.

Proving is done interactively, by the user giving commands,

tactics, to the PVS prover.
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PVS Prover

PVS Sequents

PVS proof obligations are sequents of the form

[-1] P

[-2] Q

[-3] R

----------

{1} S

{2} T

Intuitive meaning: (P AND Q AND R) => (S OR T)

• negatively numbered ancedents/assumptions above 

line,

• positively numbered consequents/goals below line

PVS maintains a proof tree of such sequents.
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PVS Prover

Tactics

There are many tactics, and you can define additional ones 

yourself.

A full list is included in the ‘PVS Prover Guide’.
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Coq PVS

intro, intros (flatten), (skolem!)

apply (lemma), (use)

unfold (expand)

simpl (beta), (simplify)

induction (induct), (induction-and-simplify)

auto, tauto (grind), (prop), (asser)

rewrite (rewrite), (replace)

Undo (undo)
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PVS Prover

Hints for Complicated Proofs

• Try to understand what the assumptions/goals mean

This is often the bottleneck in verifications; ugly PVS syntax can be 

hard to read

• Which instantiations of assumptions are useful ?

• Which lemmas might be useful?

• Carefully expand definitions

Too much expansion makes things unreadable

• Which case distinctions are useful ?

Many useful case-distinctions can be made by expanding definition, 

lift-ifing and spliting
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Conclusion

• PVS is a very general tool

• Still a BIG step from being formal with pencil & paper

to being formal in theorem prover

• Specification is easy, verification is difficult

• But, errors often exposed during specification, not

verification

• Mainly for experts on critical applications and 

academics
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?
Question
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The End

Thank You!
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