
Qian Hu, M.Sc

CAS 760
Instructor: Dr. W. M. Farmer

McMaster University

March 31, 2010

A Brief Overview of PVS



2

A brief overview of PVS 

Presentation Outline

Overview

Introduction to PVS

 PVS – system and its logic

 The PVS specification language

 PVS prover

Demo

Conclusion

References



3

Overview

Specification and verification system consisting of:

• Formal specification language.

• Model checker.

• Theorem prover.

• Documentation, administrative tools etc.

PVS is a large and complex system

PVS

PVS: Prototype Verification System

http://pvs.csl.sri.com



A brief overview of PVS 

PVS - The System and Its Logic

4



5

PVS – The system and its logic

PVS System

PVS: the system

• Implemented in LISP (more than 50.000 lines).

• Theories written and edited in text files (*.pvs).

• Proofs created interactively and saved as LISP

• data-structure (*.prf).



6

PVS – The system and its logic

PVS Logic

PVS: the logic

• Based on extensions to typed – calculus

• and classical, typed higher-order logic.
EX. (FORALL (x:list): rev(rev(x))=x)

• Extensions allow for subset types.

Unlike Coq, PVS is not based on Constructive Type

Theories.

And PVS does not have small kernel (de Bruijn principle).



A brief overview of PVS 

The PVS Specification Language

7



The PVS Specification Language

PVS Types

• Type variables: T : Type, T : Type+.

• Base types: bool, nat, real,etc. New basic types may be 

introduced by users

• Abstract data-types: Stack, List, Tree.

• Function types(may be dependent): [n:nat, m: {n: nat | 

n /= 0} -> {r:nat | r<m}].

• Enumeration types: {red, green, blue}.

• Tuple types(may be dependent): [n:nat, {m:nat | 

m<=n}].

• Dependent record types: [# n:nat, m : {k:nat | k<=n} #].

• Subset types: {i : nat | i > 1}.

Subset types are peculiar to PVS, and do not exist in for

instance Coq.

8



The PVS Specification Language

PVS Expressions

• Basic expressions:

TRUE : bool 0, 23 + 5, 17  10 : int

• Function abstraction and application:

(LAMBDA (i, j : nat) : i + j) : [nat, nat -> nat] f(i, j)

• Logic:
AND, OR, NOT, IMPLIES, IFF, =, / =, FORALL, EXISTS

• Conditionals:
IF c THEN e1 ELSE e2 ENDIF

• Records:
rc: [# a, b : int #]

re: [# a, b : int #] = rc WITH [‘a := 0]

• Subtypes:
Interval(m, n : int) : TYPE = {i : int | m <= i <= n} 

/ : [int, {n : int | n/ = 0} -> int]

9



10

The PVS Specification Language

PVS Recursive Definitions

• Lambda cannot be used for recursion

• Only named functions allow recursion

• All recursive functions must be shown to terminate by 

supplying a measure function.

• No mutual recursion



The PVS Specification Language

PVS Recursive Definitions

sum is only well typed if:

• for type-consistency: IF n/ = 0 THEN n − 1 >= 0

• for termination (measure decreases): IF n/ = 0 THEN n − 1 < n

Such conditions are called TCCs (Type Checking Conditions).

They:

• are generated for recursive definitions and subtypes and

• most of them can be automatically discarded by PVS.

Type-checking in PVS is not decidable!

11

sum(n: nat): RECURSIVE nat =

(IF n=0 THEN 0 ELSE n+sum(n-1) ENDIF)

MEASURE n Used to prove 

that the function 

is total



12

The PVS Specification Language

PVS Theories

 PVS developments are organized in to theories

 Theories can be parameterized

 Prelude contains a number of predefined theories

Main language elements

• Declarations
 Types

 Constants

• Expressions over these types

• Expressions of Boolean types may be a formula

• Formulae are theorems or axioms

• Declarations and formulae are grouped into theories



13

The PVS Specification Language

PVS Theories

class_theory: THEORY BEGIN

my_type: NONEMPTY_TYPE

constant1, constant2: my_type

f1: THEOREM

FORALL (a, b: integer): a+b=b+a

f2: AXIOM

constant1=constant2

END class_theory

Type

Declarations

Expressions



14

The PVS Specification Language

PVS Theories

Formulae

class_theory: THEORY BEGIN

my_type: NONEMPTY_TYPE

constant1, constant2: my_type

f1: THEOREM

FORALL (a, b: integer): a+b=b+a

f2: AXIOM

constant1=constant2

END class_theory



15

The PVS Specification Language

PVS Theories

class_theory: THEORY BEGIN

my_type: NONEMPTY_TYPE

constant1, constant2: my_type

f1: THEOREM

FORALL (a, b: integer): a+b=b+a

f2: AXIOM

constant1=constant2

END class_theory

Declarations



A brief overview of PVS 

PVS Prover

16



PVS Prover

Once we have defined – and type-checked! – a theory, we

can prove any lemmas and theorems it contains.

Lemmas can be done in any order; PVS keeps track of

what has been proved.

Proving is done interactively, by the user giving commands,

tactics, to the PVS prover.

17



PVS Prover

PVS Sequents

PVS proof obligations are sequents of the form

[-1] P

[-2] Q

[-3] R

----------

{1} S

{2} T

Intuitive meaning: (P AND Q AND R) => (S OR T)

• negatively numbered ancedents/assumptions above 

line,

• positively numbered consequents/goals below line

PVS maintains a proof tree of such sequents.
18



PVS Prover

Tactics

There are many tactics, and you can define additional ones 

yourself.

A full list is included in the ‘PVS Prover Guide’.

19

Coq PVS

intro, intros (flatten), (skolem!)

apply (lemma), (use)

unfold (expand)

simpl (beta), (simplify)

induction (induct), (induction-and-simplify)

auto, tauto (grind), (prop), (asser)

rewrite (rewrite), (replace)

Undo (undo)



A brief overview of PVS 

Demo

20



PVS Prover

Hints for Complicated Proofs

• Try to understand what the assumptions/goals mean

This is often the bottleneck in verifications; ugly PVS syntax can be 

hard to read

• Which instantiations of assumptions are useful ?

• Which lemmas might be useful?

• Carefully expand definitions

Too much expansion makes things unreadable

• Which case distinctions are useful ?

Many useful case-distinctions can be made by expanding definition, 

lift-ifing and spliting

21



A brief overview of PVS 

Conclusion

• PVS is a very general tool

• Still a BIG step from being formal with pencil & paper

to being formal in theorem prover

• Specification is easy, verification is difficult

• But, errors often exposed during specification, not

verification

• Mainly for experts on critical applications and 

academics

22



A brief overview of PVS 

References 

 PVS homepage: http://pvs.csl.sri.com

 A Tutorial Introduction to PVS

J.Crow, S.Ower, J.M.Rushby, SRI International, 1995

 PVS Bibliography
John Rushby, SRI International, 1999

 PVS: A Prototype Verification System
S.Ower, J.M.Rushby, N.Shankar, SRI International, 1992

 PVS: Combing Specification, Proof Checking, and Model 

Checking
S.Ower, S.Rajan, J.M.Rushby, N.Shankar, 1996

 Subtypes for Specifications: Predicate Subtyping in PVS
J.M.Rushby, S.Ower, N.Shankar, 1998

23



A brief overview of PVS 

?
Question

24



The End

Thank You!

25


