

— i

=

Outline

The central idea of Abstract State Machine (ASM)

The example Set Extension in pseudo code program
and its semantics

Sequential Small-Step ASM Program and its
semantics

Formalizing Set Extension in Sequential Small-Step
ASM Program

The Central |dea of ASM

Abstract State Machine (ASM) is a technique to describe
algorithm or, more generally, discrete system.

Symbols occurring in a program of ASM are related to the
real-world objects and functions of a state.

ASM relate symbols to their interpretation by usin
structures (models), which including functions an
predicates over real world items.

ASM use first order logic to define and analyze such
structures.

/ e
Terms: Sequential Small-Step ASM

A discrete system can be represented as a “sequential
small-step ASM’, if

= the system exhibits global states
= the system proceeds in steps form state to state

= foreachstep S-S, toderiveS from S, it suffices to
explore a bounded amount of information about S .

~Terms: Transition System (classical

models of discrete system)

A transition system A=(states, init, F)
= a set states of “states”
= Init < States of “initial states”
= a “next state function” F': states — states

= a run of a transition system is a sequence S .S S, ... of
states 5. withs_ an initial stateand s, = F(S,).

A transition system is called an algorithm if each run
of the system reach a terminal state

An effective transition system is an effective algorithm.

o

Example: Set Extension

augment is a binary function to extend a set by a item.
= the first argument is a set.
= the second argument is any item.

augment(M,m) =, M| J{m}

To write this idea down in pseudo code, introduce
= three variable (symbols) X, x, y

= initial state S in which X is evaluated as M (a set), x as m
(an element), y as n (an element), and augment as the
function defined above

= The pseudo code program as following

Example: Set Extension cont.

P: begin
X := augment(X, x);
X := augment(X, y);

end.

This program applied to S terminates in a state S” in
which X is evaluated as M U{m, n}

Example: Set Extension cont.

The pseudo code program P has a finite set=={X, x, y}

The finite set)’ is interpreted in the initial state

S ={X; =M, X, =m, y. =n,augment, = augment}
The program P is applicable to the state S. The first
assignment statement X := augment(X, x) updates S
and yield S™:

S ={X, = Xs| {m}, x, =m,y. =n,augment_. =augment}
The second assignment X := augment(X, y) update S’ to
S S ={X, =X | H{n}.x, =m,y.. =n,augment. =augment}

p

o

Pseudo code Algorithm

Every pseudo code program P has a finite set }, of symbols
to be interpreted in a state.

A state of P is an interpretation of all symbols in }..

There is an infinite set of states of P. An algorithm is not
intended to run on all states.

The designer of algorithm is free to choose the states,
including initial states, which the algorithm is intended for.

Pseudo code Algorithm cont.

A pseudo code algorithm M is a triple M=(states, init, P)

= P is a pseudo code program, applicable to each state
S e states, and return a state P(S) € states

= Init is a set and Init — states

The algorithm M of the example Set Extension defines a
transition system tr(M)

(Remember? a transition system is a triple A=(states, init, F))

A class of pseudo code algorithms is called sequential small-
step algorithms.

Sequential Small-Step ASM Programs

Assignment Statements
= Simple Assignment Statements
= Updates of Functions

Consistent Assignment Statements

Guards and Conditional Assignment Statements

Simple Assighment Statements

Simple assignment statements of a Sequential Small-
Step ASM program over a signature 2 has the form:

f=¢
= f isaconstant symbol in Z
= tels

= T; isthe set of ground terms over X

each constant symbol in ¥ is an element of Ty
if T € T, with thearity of nandif t;,...,t, €T, then
Pt .t Je E

/ e L
SA Statements Cont.

Applied to a 2-structure S, yield the step S—= S

= S updates the value of f, the constant symbol f'gains s
asanew valuein S, i.e. f. =t

= the semantics of all other symbols remains untouched,
i.e. 0, =05 foreach geX, g=f

p

/

Updates of Functions

The general form of the updates over a signature X is of
the form:

e)
b ey

- and tl""tn’t ETZ

Astep S— =)= 8 updates fs at (t, ...t)
by ts,yielding f_(t,_...t,)=t . The function f
remains untouched for all other arguments i.e.

fS' (u]_;-..,un): fS(u11°--1un) fOI' (ul"“’un)i(tls’”.’tns)

Consistent Assignment Statements

A step S —S of an ASM program in general executes

more than one assignment statements, provided every
two such assignments are consistent.

Consistent assignments:

Two assignments f (t,,...,t.)=t and f(u,,...,u,)=U
are consistent at a state S if (t1S e .,tns = (Ul, e Un)
implies ty = U,.

P —— s
CA Statements cont.

let Z be a set of assignment statements with terms in T

let S be a X-structure and assume that Z is consistent at
S

Gy
= §' is a X-structure

= the universe U of S isidentical to the universe of S .

L Vv If ZatSupdates f.(u)byv
s otherwise

~Guards and Conditional

Assignment Statements

ASM employ conditional assignment statements, of
the form

if « then r
= ris an assignment statement
= « is a Boolean expression
= the term o plays the role of a guard of r
The guard over X are symbols sequence:
= forall t,Ue Ty t=Ujsaguide overX
= if o, B are guards over X, so are a A f, and —«
= we assume each X is extended by = A,—,true, false

SSS ASM Programs and Semantics

A Sequential Small-Step ASM program P over a
signature X is a set of conditional assignment
statements over . .

For each X-Structure S, the program P defines a
successor structure S’, usually written P(S), by step

S—5S
To define S’, let Z =, {r |"if athen r''e P and o =true}
and construct S’ by:
{ v if ZatSupdates f.(u)byv
fo(u)= :
fs (u) otherwise

/“
-SSS ASM Programs and Semantics

cont.

ASM are reactive systems which iterate their
computation step.

For the special case of terminating runs, one can
choose among various natural termination criteria

= No statement is applicable any more
= Machine yields an empty update set
= The state does not change any more

/“
-SSS ASM Programs and Semantics

cont.

An ASM computation step in a given state consists in

executing simultaneously (parallel) all updates of all
assighment states whose guard is true in the state.

If these updates are consistent, the result of their
execution yields the next state.

Set Extension in SSS ASM Program

P —
P : par
if [=0 t
if [=0 t]
it =1 f
it 11 ¢
endpar.

nen X := g(X, x);
nen [:=1;

nen X := g(X, y);
nen [:= 2

An ASM program cannot express sequential composition.

This deficit is

easily overcome by adding a fresh variable,

[, and evaluating [aso in the initial state S.

Bisection Algo in Pseudo code

Pseudo code Program

while |f(a) — f(b)| = e do
m := mean(a,b);
if sign(a) # sign(m) then b :=m

elsea :=m

Bisection Algo in SSS ASM Prog

SSS ASM Program:

P : par
if stop(a,b) = true then result := a;
if — (stop(a,b)=true) A f(mean(a,b))=0
then result:=mean(a,b);
if — (stop(a,b)=true) A f(mean(a,b)) # o
A egsign(f(a),f(mean(a,b)))=true
then a:=mean(a, b);
if —(stop(a,b)=true) A f(mean(a,b)) # o
A egsign(f(b),f(mean(a,b)))=true
then b:=mean(a, b);
endpar.

/ T

=

Reference

Wolfgang Reisig, Abstract State Machines for the
Classroom - The Basics

Egon Borger, Robert Stark, Abstract State Machines
— A method for High-level System Design and Analysis

P R

The End

Question?

