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The Central  Idea of ASM
 Abstract  State  Machine (ASM)  is  a technique to describe 

algorithm or, more generally, discrete system.

 Symbols occurring in a program of ASM are related to the 
real-world objects and functions of a state.

 ASM relate symbols to their interpretation by using  
structures (models), which including functions and 
predicates over real world items.

 ASM  use first order logic to define and analyze such 
structures.



Terms: Sequential Small-Step ASM

 A discrete system can be represented as a “sequential 
small-step ASM”, if

 the system exhibits global states

 the system proceeds in steps form state to state

 for each step            , to derive     from    , it suffices to 
explore a bounded amount of information about     .
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Terms: Transition System (classical 
models of discrete system) 
 A transition system  A=(states, init, F)

 a set states of “states”

 Init                 of  “initial states”

 a “next state function” F :

 a run of a transition system is a sequence               of 
states     with    an initial state and                 .

 A transition system is  called an algorithm if each run 
of the system reach a terminal state

 An effective transition system is an effective algorithm. 
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Example: Set Extension
 augment is a binary function to extend a set by a item.
 the first argument is a set.

 the second argument is any item. 

 To write this idea down in pseudo code, introduce
 three variable (symbols) X, x, y

 initial state S in which X is evaluated as M (a set), x as m 
(an element), y as n (an element), and augment as the 
function defined above

 The pseudo code program as following

 }{),( mMmMaugment def



Example: Set Extension cont.
P: begin

X := augment(X, x);

X := augment(X, y);

end.

This program applied to S terminates in a state S’’ in 
which X is evaluated as   },{ nmM



Example: Set Extension cont.
 The pseudo code program P has a finite set

 The finite set ∑ is interpreted in the initial state 

 The program P is applicable to the state S. The first 
assignment statement X := augment(X, x) updates S 
and yield S’:

 The second assignment X := augment(X, y) update S’ to
S’’:

},,{ yxX

},,,{ augmentaugmentnymxMXS SSSS 

 },,},{{ ''''

' augmentaugmentnymxmXXS
SSSSS


 },,},{{ '''''''''

'' augmentaugmentnymxnXXS
SSSSS




Pseudo code Algorithm
 Every pseudo code program P has a finite set ∑ of symbols 

to be interpreted in a state.

 A state of P is an interpretation of all symbols in ∑.

 There is an infinite set of states of P. An algorithm is not 
intended  to run on all states.

 The designer of algorithm is free to choose the states,  
including initial states, which the algorithm is intended for. 



Pseudo code Algorithm cont.
 A pseudo code algorithm M is a triple M=(states, init, P)

 P is  a  pseudo code program,  applicable to each state 

, and return a state  

 Init is a set and 

 The algorithm M of  the example Set Extension defines a 
transition system tr(M)

(Remember? a transition system is a triple A=(states, init, F))

 A class of pseudo code algorithms is called sequential small-
step algorithms.
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Sequential Small-Step ASM Programs

 Assignment Statements

 Simple Assignment Statements

 Updates  of  Functions

 Consistent Assignment Statements

 Guards and Conditional Assignment Statements



Simple Assignment Statements
 Simple  assignment  statements  of a Sequential Small-

Step ASM program over a signature Σ has the form:

f := t

 f  is a constant symbol in Σ



 is the set of ground terms over Σ

 each  constant  symbol  in  Σ  is  an  element  of 

 if    with the arity of  n and if                             , then 
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SA Statements Cont.
 Applied to a Σ-structure S, yield the step

 updates the value of f, the constant symbol f gains     
as a new value in     , i.e.

 the semantics of all other symbols remains untouched, 
i.e.               for each           , 
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Updates of Functions
 The general form of the updates over a signature Σ is of 

the form:

 with 

 and  

 A step                                   updates        at                    
by      , yielding                                . The function f  
remains  untouched  for all other arguments  i.e. 

for 
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Consistent Assignment Statements
 A step            of an ASM program in general executes 

more than one assignment statements, provided every 
two such assignments are consistent.

 Consistent assignments:

Two assignments                               and                               
are consistent at a state S if                                               
implies             .
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CA Statements cont.
 let Z be a set of assignment statements with terms in 

 let S be a Σ-structure and assume that Z is consistent at 
S

 is a Σ-structure

 the universe U of      is identical to the universe of    .
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Guards and Conditional 
Assignment Statements
 ASM employ conditional assignment statements, of 

the form

if α then r

 r is an assignment statement

 α is a Boolean expression

 the term α plays the role of a guard of r

• The guard over  Σ are symbols sequence:

 for all                  ,            is a guide over Σ

 if α, β are guards over Σ, so are           , and 

 we assume each Σ is extended by 
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SSS ASM Programs and Semantics
 A Sequential Small-Step ASM program P over a 

signature  Σ is a set of conditional assignment 
statements over Σ .

 For each Σ-Structure S, the program P defines a 
successor structure S’, usually written P(S), by step

 To define S’, let

and construct  S’ by:
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SSS ASM Programs and Semantics 
cont.
 ASM are reactive systems which iterate their 

computation step.

 For the special case of terminating runs, one can 
choose among various natural termination criteria

 No statement is applicable any more

 Machine yields an empty update set

 The state does not change any more



SSS ASM Programs and Semantics 
cont.

 An ASM computation step in a given state consists in 
executing simultaneously (parallel) all updates of all 
assignment states whose guard is true in the state.

 If these updates are consistent, the result of their 
execution yields the next state.



Set Extension in SSS ASM Program
P : par 

if  l =     then X := g(X, x);

if  l =     then  l :=    ;

if  l =     then X := g(X, y);

if  l =     then  l := 

endpar.

• An ASM program cannot express sequential composition.  
This deficit is easily overcome by adding  a fresh variable, 
l, and evaluating  l as    in the initial state S.
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Bisection Algo in Pseudo code
• Pseudo code Program

while |f(a) − f(b)| ≥ ε do

m := mean(a,b);

if sign(a)     sign(m) then b := m

else a := m





Bisection Algo in SSS ASM Prog
 SSS ASM Program:

P : par
if  stop(a,b) = true  then  result := a;
if       (stop(a,b)=true)     f(mean(a,b))=0  

then  result:=mean(a,b);
if       (stop(a,b)=true)     f(mean(a,b))    0        

eqsign(f(a),f(mean(a,b)))=true  
then   a:=mean(a, b);

if       (stop(a,b)=true)     f(mean(a,b))    0        
eqsign(f(b),f(mean(a,b)))=true  
then   b:=mean(a, b);

endpar.
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The End

Question?


