
The first presentation in the course 760

By Bingzhou Zheng

Outline
1. The central idea of Abstract State Machine (ASM)

2. The example Set Extension in pseudo code program
and its semantics

3. Sequential Small-Step ASM Program and its
semantics

4. Formalizing Set Extension in Sequential Small-Step
ASM Program

The Central Idea of ASM
 Abstract State Machine (ASM) is a technique to describe

algorithm or, more generally, discrete system.

 Symbols occurring in a program of ASM are related to the
real-world objects and functions of a state.

 ASM relate symbols to their interpretation by using
structures (models), which including functions and
predicates over real world items.

 ASM use first order logic to define and analyze such
structures.

Terms: Sequential Small-Step ASM

 A discrete system can be represented as a “sequential
small-step ASM”, if

 the system exhibits global states

 the system proceeds in steps form state to state

 for each step , to derive from , it suffices to
explore a bounded amount of information about .

'SS  'S S

S

Terms: Transition System (classical
models of discrete system)
 A transition system A=(states, init, F)

 a set states of “states”

 Init of “initial states”

 a “next state function” F :

 a run of a transition system is a sequence of
states with an initial state and .

 A transition system is called an algorithm if each run
of the system reach a terminal state

 An effective transition system is an effective algorithm.

states

statesstates

210 SSS

0SiS)(1 ii SFS

Example: Set Extension
 augment is a binary function to extend a set by a item.
 the first argument is a set.

 the second argument is any item.

 To write this idea down in pseudo code, introduce
 three variable (symbols) X, x, y

 initial state S in which X is evaluated as M (a set), x as m
(an element), y as n (an element), and augment as the
function defined above

 The pseudo code program as following

 }{),(mMmMaugment def

Example: Set Extension cont.
P: begin

X := augment(X, x);

X := augment(X, y);

end.

This program applied to S terminates in a state S’’ in
which X is evaluated as  },{ nmM

Example: Set Extension cont.
 The pseudo code program P has a finite set

 The finite set ∑ is interpreted in the initial state

 The program P is applicable to the state S. The first
assignment statement X := augment(X, x) updates S
and yield S’:

 The second assignment X := augment(X, y) update S’ to
S’’:

},,{ yxX

},,,{ augmentaugmentnymxMXS SSSS 

 },,},{{ ''''

' augmentaugmentnymxmXXS
SSSSS


 },,},{{ '''''''''

'' augmentaugmentnymxnXXS
SSSSS


Pseudo code Algorithm
 Every pseudo code program P has a finite set ∑ of symbols

to be interpreted in a state.

 A state of P is an interpretation of all symbols in ∑.

 There is an infinite set of states of P. An algorithm is not
intended to run on all states.

 The designer of algorithm is free to choose the states,
including initial states, which the algorithm is intended for.

Pseudo code Algorithm cont.
 A pseudo code algorithm M is a triple M=(states, init, P)

 P is a pseudo code program, applicable to each state

, and return a state

 Init is a set and

 The algorithm M of the example Set Extension defines a
transition system tr(M)

(Remember? a transition system is a triple A=(states, init, F))

 A class of pseudo code algorithms is called sequential small-
step algorithms.

statesS statesSP )(

statesInit 

Sequential Small-Step ASM Programs

 Assignment Statements

 Simple Assignment Statements

 Updates of Functions

 Consistent Assignment Statements

 Guards and Conditional Assignment Statements

Simple Assignment Statements
 Simple assignment statements of a Sequential Small-

Step ASM program over a signature Σ has the form:

f := t

 f is a constant symbol in Σ



 is the set of ground terms over Σ

 each constant symbol in Σ is an element of

 if with the arity of n and if , then

Tt

T

T

Tf Ttt n,,1 

Tttf n),,(1 

SA Statements Cont.
 Applied to a Σ-structure S, yield the step

 updates the value of f, the constant symbol f gains
as a new value in , i.e.

 the semantics of all other symbols remains untouched,
i.e. for each ,

': SS tf 

'S St
'S SS

tf '

SS
gg ' g fg 

Updates of Functions
 The general form of the updates over a signature Σ is of

the form:

 with

 and

 A step updates at
by , yielding . The function f
remains untouched for all other arguments i.e.

for

tttf n :),,(1 

f

Tttt n ,,1 
':),(1 SS

tttf n 


Sf)(1 SS ntt 
St SnS

tttf
SS
:)(1' 

),,(),,(11' nSnS
uufuuf  ),,(),,(11 SS nn ttuu  

Consistent Assignment Statements
 A step of an ASM program in general executes

more than one assignment statements, provided every
two such assignments are consistent.

 Consistent assignments:

Two assignments and
are consistent at a state S if
implies .

'SS 

tttf n :),,(1  uuuf n :),,(1 
),,(),,(11 nn uutt

SS
 

SS ut 

CA Statements cont.
 let Z be a set of assignment statements with terms in

 let S be a Σ-structure and assume that Z is consistent at
S

 is a Σ-structure

 the universe U of is identical to the universe of .

T

'SS Z

'S
'S S






otherwise)(

by)(updates Sat Zif
)('

uf

vufv
uf

S

S

S

Guards and Conditional
Assignment Statements
 ASM employ conditional assignment statements, of

the form

if α then r

 r is an assignment statement

 α is a Boolean expression

 the term α plays the role of a guard of r

• The guard over Σ are symbols sequence:

 for all , is a guide over Σ

 if α, β are guards over Σ, so are , and

 we assume each Σ is extended by

Tut, ut 

  

false true,,,, 

SSS ASM Programs and Semantics
 A Sequential Small-Step ASM program P over a

signature Σ is a set of conditional assignment
statements over Σ .

 For each Σ-Structure S, the program P defines a
successor structure S’, usually written P(S), by step

 To define S’, let

and construct S’ by:

'SS P

} and Pr" then if" |{ S truerZ def  






otherwise)(

by)(updates Sat Zif
)('

uf

vufv
uf

S

S

S

SSS ASM Programs and Semantics
cont.
 ASM are reactive systems which iterate their

computation step.

 For the special case of terminating runs, one can
choose among various natural termination criteria

 No statement is applicable any more

 Machine yields an empty update set

 The state does not change any more

SSS ASM Programs and Semantics
cont.

 An ASM computation step in a given state consists in
executing simultaneously (parallel) all updates of all
assignment states whose guard is true in the state.

 If these updates are consistent, the result of their
execution yields the next state.

Set Extension in SSS ASM Program
P : par

if l = then X := g(X, x);

if l = then l := ;

if l = then X := g(X, y);

if l = then l :=

endpar.

• An ASM program cannot express sequential composition.
This deficit is easily overcome by adding a fresh variable,
l, and evaluating l as in the initial state S.

0

0 1

1

1 2

0

Bisection Algo in Pseudo code
• Pseudo code Program

while |f(a) − f(b)| ≥ ε do

m := mean(a,b);

if sign(a) sign(m) then b := m

else a := m



Bisection Algo in SSS ASM Prog
 SSS ASM Program:

P : par
if stop(a,b) = true then result := a;
if (stop(a,b)=true) f(mean(a,b))=0

then result:=mean(a,b);
if (stop(a,b)=true) f(mean(a,b)) 0

eqsign(f(a),f(mean(a,b)))=true
then a:=mean(a, b);

if (stop(a,b)=true) f(mean(a,b)) 0
eqsign(f(b),f(mean(a,b)))=true
then b:=mean(a, b);

endpar.

 















Reference

 Wolfgang Reisig, Abstract State Machines for the
Classroom – The Basics

 Egon Borger, Robert Stark, Abstract State Machines
– A method for High-level System Design and Analysis

The End

Question?

