

Propositional Logic Rule (Lecture 2 and Tutorial 1)	Coq Tactic(s)
$\wedge\text{-e1}$	destruct
$\wedge\text{-e2}$	destruct
$\neg\text{-i}$	split
$\vee\text{-e}$	destruct
$\vee\text{-i1}$	left
$\vee\text{-i2}$	right
$\rightarrow\text{-i}$	intro / intros
$\rightarrow\text{-e}$	apply
$_ _i$ followed by $_ _e$	contradiction
$p \vee \neg p$ (law of excluded middle)	generalize (classic p); intro.
make-box	assert
Inductive Definitions and Proofs (Lecture 3)	Coq
Make a standard (non-recursive) definition	Definition
Make an inductive/recursive definition	Inductive (for sets) or Fixpoint (for functions)
Take cases	destruct
Do proof by induction	induction
Equivalence of $(P = Q)$ and $(P \leftrightarrow Q)$	apply prop_ext