

Introduction to Coq Proof Assistant

Qian Hu, M.Sc

McMaster University

March 3, 2010

Presentation Outline

■ Overview

- Computer Assistance in Proofs

- Proof Assistant

■ Coq

- Introduction

- The Coq Proof Assistant

- Programming With Coq

■ Demo

■ References

Computer Assistance in Proofs

Proof consists of:

- reasoning (derivation rules) and
- computations (reductions).

Computers can assist with both:

- Computations:
 - *numerical computations (“calculators”)*
 - *symbolic computations (computer algebra systems)*
- Reasoning:

Automated theorem provers	Proof assistants
Fully automated System delivers a proof Specialized	Interactive Human delivers a proof Highly general

- Under development: combining computations and reasoning in one system (e.g. Maple mode for Coq)

Proof Assistants

- General structure (details may vary)

- An error in the checker invalidates the whole approach!
- De Bruijn principle: we shall prefer systems with a small, reliable checker

Presentation Outline

- Overview

- Computer in Proofs
- Proof Assistant

- Coq

- Introduction
- The Coq Proof Assistant
- Programming With Coq

- Demo

- References

Coq: Short Intro

- Theorem prover developed in France
 - Name is the French word for rooster
 - Lots of library & tool support
- Available for all major platforms(Linux, MS Win, OSX) on the web at <http://coq.inria.fr>
- Written in the language O'Caml
- Working with Coq: interface
 - CoqIDE (User-friendly but not stable for Windows)
 - ProofGeneral (uses Xemacs, somehow more difficult to use but stable)

Introduction

CoqIDE

Mechanisms

Coq provides mechanisms for

- Writing (*encoding*) specifications
- Developing interactively new proofs
- Batch checking of existing proofs
- Reusing previously developed proofs and specifications
- Extracting programs from proofs

CIC

- The formalism (metalanguage) of Coq is the *Calculus of (Co)Inductive Constructions* (CIC), a conservative extension of λC – λC plus ‘inductive types’

λC	Coq
$*p$	Prop
$*s$	Set
\square	Type
$\lambda x : A. M$	fun x : A => M
$\Pi X : A. M$	forall x : A, M
\rightarrow	\longrightarrow

Curry-Howard Isomorphism

- Central Principle: Systems are represented (*encoded*) via the Curry-Howard isomorphism
- Propositions as types, Proofs as terms

proof	\Leftrightarrow	term
Proposition	\Leftrightarrow	type
proof checking	\Leftrightarrow	type checking
proving / proof search	\Leftrightarrow	term search
program, algorithm	\Leftrightarrow	term
specification	\Leftrightarrow	type
program	\Leftrightarrow	proof

Tactic-based System

- CIC is quite powerful, so automatic proof generation is quite limited
- Instead, a user provides hints in the form of proof scripts
- Proof scripts are lists of tactics, which guide Coq in generating the proof

Declarations

- Variables can be declared as follows:

Coq < ***Variable n : nat.***

n is assumed

- One may assume properties for declared variables:

Coq < ***Hypothesis Pos_n : n>0.***

Pos_n is assumed

Definitions

- Attach a name to an expression

Coq < ***Definition three := 3.***

three is defined

- Definition Functions

Coq < ***Definition add3 (x : nat) := x + 3.***

add3 is defined

Check

- The command **Check** produces the type of its argument.

```
Coq < Check O.
```

```
0  
: nat
```

```
Coq < Check 2 + 3.
```

```
2 + 3  
: nat
```

Libraries

- When you start Coq the Core library is loaded at start.
- It defines many basic notions and notations (e.g. Set, nat, plus, +, <).
- For more involved properties and definitions one may need to load other libraries. E.g.:

Coq < Require Import Arith.

Some Useful Tactics

	\Rightarrow	for all	\wedge	\vee	exist	not	=
Hypothesis	apply	apply	elim	elim	elim	elim	rewrite
goal	intros	intros	split	Left or right	Exists v	intros	reflexivity

Proving $A \rightarrow A$

```
Coq < Parameter A B C : Prop.
```

A is assumed

B is assumed

C is assumed

```
Coq < Lemma I : A -> A.
```

1 subgoal

=====

A -> A

```
| < intro x.
```

1 subgoal

x : A

=====

A

```
| < exact x.
```

Proof completed.

```
| < Qed.
```

intro x.

exact x.

I is defined

```
Coq < Check I.
```

I

$: A \rightarrow A$

Proving $A \wedge B \rightarrow B \wedge A$

```
Coq < Lemma and_commutative : A ∧ B → B ∧ A.
```

```
1 subgoal
```

```
=====
```

A \wedge B \rightarrow B \wedge A

```
and_commutative < intro.
```

```
1 subgoal
```

H : A \wedge B

```
=====
```

B \wedge A

```
and_commutative < elim H.
```

```
1 subgoal
```

H : A \wedge B

```
=====
```

A \rightarrow B \rightarrow B \wedge A

```
and_commutative < intros.
```

```
1 subgoal
```

H : A \wedge B

H0 : A

H1 : B

```
=====
```

B \wedge A

```
and_commutative < split.
```

```
2 subgoals
```

H : A \wedge B

H0 : A

H1 : B

```
=====
```

B

subgoal 2 is:

A

```
and_commutative < exact H1.
```

```
1 subgoal
```

H : A \wedge B

H0 : A

H1 : B

```
=====
```

A

```
and_commutative < exact H0.
```

Proof completed.

Demo

Demo 1

More examples in the Demo 2

References 1

- Coq: <http://coq.inria.fr>
- The Coq development team. The Coq proof Assistant Reference Manual, Ecole Polytechnique, INRIA, 2009
- Yves Bertot, *Coq in A Hurry*, 2005
- Yves Bertot, Pierre Castéran, *Coq'Art: The Calculus of Inductive Constructions*. Springer-Verlag, 2004
- Eduardo Giménez, Pierre Castéran, *A Tutorial on [Co-]Inductive Types in Coq*, 2006

References 2

- Adam Koprowski, *Introduction to Coq--Proving With Computer Assistance*, 2007
- Yves Bertot, *A Short Presentation of Coq*, 2008
- Furio Honsell, *Interactive Proof Assistants Based on Type Theory: Coq*, 2001
- Martin Henz and Aquinas Hobor, *Automated Theorem Proving*
- Wiki, *Curry–Howard correspondence*

The End

Thank You!