Introduction to
Coq Proof Assistant

Presentation Outline

e Overview
» Computer Assistance in Proofs
» Proof Assistant

e CoQg

» Introduction

» The Coq Proof Assistant
» Programming With Coq

ek Demo
ke References

Computer Assistance in Proofs

Proof consists of:
= reasoning (derivation rules) and
= computations (reductions).

Computers can assist with both:

= Computations:

» numerical computations (“calculators’)

» symbolic computations (computer algebra systems)
= Reasoning:

Automated theorem provers Proof assistants
Fully automated Interactive
System delivers a proof Human delivers a proof
Specialized Highly general

= Under development: combining computations and reasoning in one
system (e.g. Maple mode for Coq)

Overview

Proof Assistants

o General structure (details may vary)

User Proof Assistant
Specification
Verified

Proof Proof
User
Tactics De\éelopment Checker Statement
ystem

o An error In the checker invalidates the whole
approach!

@ De Bruijn principle: we shall prefer systems with a
small, reliable checker

Presentation Outline

e Overview
» Computer in Proofs
> Proof Assistant

r Co(Q

> Introduction

» The Coq Proof Assistant
» Programming With Coq

ek Demo
ke References

Introduction

y Codg: Short Intro

« Theorem prover developed in France
»Name Iis the French word for rooster
»Lots of library & tool support

« Available for all major platforms(Linux, MS Win, OSX) on
the web at http://coq.inria.fr

« Written in the language O'Caml
« Working with Coq: interface
»CoqIDE (User-friendly but not stable for Windows)

»ProofGeneral (uses Xemacs, somehow more difficult to
use but stable)

http://coq.inria.fr/

Introduction

CoqlIDE

File Edit Navigation Try Tactics Templates Queries Display Compile Windows Help

HX 3w TFLO.,

@*Unnamed Buffer*

Proof Script

\Welcome to CoqIDE, an Integrated Development Environment for Coq
'You are running The Coq Proof Assistant, version 8.2 (February 2009)

Current Goal

Error Reporting

‘Ready

Line: 1 Char: 1 Coqglde started

The Coq Proof Assistant

Mechanisms

Cog provides mechanisms for
« Writing (encoding) specifications
Developing interactively new proofs
Batch checking of existing proofs

Reusing previously developed proofs and
specifications

Extracting programs from proofs

The Coqg Proof Assistant

CIC

« The formalism (metalanguage) of Coq is the Calculus of
(Co)Inductive Constructions (CIC), a conservative
extension of) AC — AC plus ‘inductive types’

Cog

*p Prop
*s Set
O Type
A AM funx:A=>M
Nnx:AM forallx: A, M
- —_>

The Coq Proof Assistant

Curry-Howard Isomorphism

Central Principle: Systems are represented (encoded)

via the Curry-Howard isomorphism
Propositions as types, Proofs as terms

proof <& term
Proposition < type
proof checking < type checking
proving / proof search <& term search
program, algorithm < term
specification <& type
program < proof

The Coqg Proof Assistant

Tactic-based System

« CIC is quite powerful, so automatic proof generation is quite
limited

Instead, a user provides hints in the form of proof scripts

Proof scripts are lists of tactics, which guide Coq in
generating the proof

Programming With Coq

Declarations

Variables can be declared as follows:

Coqg < Variable n : nat.
nis assumed

One may assume properties for declared variables:
Coqg < Hypothesis Pos_n : n>0.

Pos nis assumed

Programming With Coq

Definitions

« Attach a name to an expression

Coqg < Definition three := 3.
three iIs defined

Definition Functions

Coq < Definition add3 (x : nat) :=x + 3.
add3 is defined

Programming With Coq

Check

The command Check produces the type of its argument.

Coqg < Check O.
0
> nat

Coqg < Check 2 + 3.
2+3
: nat

Programming With Coq

Libraries

« When you start Coq the Core library is loaded at start.

« [t defines many basic notions and notations (e.g. Set,
nat, plus, +, <).

« For more involved properties and definitions one may
need to load other libraries. E.g.:

Cog < Require Import Arith.

Programming With Coq

Some Useful Tactics

Hypothesis apply apply elim elim elim elim rewrite

goal intros intros split Lrei;thct)r EXxists v intros reflexivity

Programming With Coq

Proving A -> A

Coq < Parameter A B C : Prop.
A is assumed
B is assumed
C is assumed

Cog<Lemmal:A->A.
1 subgoal

| < intro x.
1 subgoal

| < exact x.
Proof completed.

| < Qed.
intro x.
exact x.

| is defined

Coq < Check I
I
CA->A

Programming With Coq

Proving AANB->BANA

Coq < Lemma and_commintative : AANB->BAA.
1 subgoal

AARB->BAA

and_commutative < intro.
1 subgoal

H:AAB

BAA

and_commutative < elim H.
1 subgoal

H:AAB

A>B->BAA

and _commutative < intros.
1 subgoal

H:AAB
HO:A
H1:B

BAA

and _commutative < spiit.
2 subgoals

H:AAB
HO:-A
H1:B

subgoal 2 is:
A

and_commutative < exact H1.
1 subgoal

H-AAB
HO:-A
H1:B

A

and_commutative < exact HO.
Proof completed.

Programming With Coq

Demo

Demo 1

More examples in the Demo 2

References 1

» Cod: http://coqg.inria.fr

» The Coq development team. The Coqg proof Assistant
Reference Msnual, Ecole Polytechnique, INRIA, 2009

» Yves Bertot, Coqg in A Hurry,2005

» Yves Bertot, Pierre Castéran, Coqg'Art: The Calculus of
Inductive Constructions. Springer-Verlag,2004

» Eduardo Gimeénez, Pierre Castéeran, A Tutorial on [Co-
lInductive Types in Coqg, 2006

http://coq.inria.fr/

References 2

» Adam Koprowski, Introduction to Coqg--Proving With
Computer Assistance, 2007

» Yves Bertot, A Short Presentation of Coqg, 2008

> Furio Honsell, Interactive Proof Assistants Based on
Type Theory: Coq, 2001

» Martin Henz and Aquinas Hobor, Automated Theorem
Proving

» Wiki, Curry—Howard correspondence

The End
Thank You!

