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Theories / Structured Descriptions of theories

Why are we interested in theories?

» We need a theory to specify a problem before we can
develop a program to solve it.

» We need a theory to represent knowledge.

Why are we interested in structured descriptions of
theories?

» We find theories very hard to understand unless they have
a well-structured description.

» We attempt to represent knowledge as collections of
separate simple fragments.

EEAREIARIIAREIAN GO R



Theory

The paper of Burstall and Goguen (1977) makes theories
many-sorted, and with provision for errors.

A many-sorted theory is given by:

» a set of sorts (including the sort of truth value)
» a set of operators (including true and false)

» a set of laws which the operators above must satisfy
Note:

» The laws take the form of equations with free variables
but no quantifiers, which are implicitly universally
quantified.

» The equations are closed under inference by reflexivity,
transitivity and symmetry of equality, and by substitution.
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Language “Clear”

In Burstall and Goguen' paper (1977), they proposed the
language “Clear” as a tool

» to describe program specification

> to serve to represent knowledge in a machine manipulable
form.

The language Clear uses the following theory-building
operations and mechanism to build theories.
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Theory-Building Operations

To build a structured theory, we must build our theories up
from small intelligible pieces:

» the ability to write small and explicit theories, like
theory sorts ---
opns - -
eqns --- endth

» four operations on theories enable us to build up theory
expressions denoting complex theories
» combine
» enrich

» induce
» derive
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Four Operations / Combine

NatO

theory sorts nat

Bool0
theory

opns

eqns

sorts
opns

vars
eqns

0 :— nat
succ . nat — nat
endth

bool

true : — bool
false : — bool
= : bool — bool
A : bool — bool
p : bool

—true = false
—false = true
false \ p = false

true Ap=p endthr T T F T



Four Operations / Combine Cont.

+ is used as the combine operation

Bool0 + NatO
theory sorts
opns

vars
eqns

endth

bool , nat

true : — bool
false : — bool
= : bool — bool
A : bool — bool
0 :— nat

succ : nat — nat
p : bool

—true = false
—false = true
false N\ p = false
true A\p=p
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Four Operations / Enrich

The whole express below expression denotes the new enriched
theory.

Nat1l
enrich BoolO + NatO by
opns <: nat, nat — bool
eq : nat, nat — bool
vars m, n : nat
eqns 0 < n = true
succ(m) < 0 = false
succ(m) < succ(n)=m<n
eqimn)=m<nAn<m
endth
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Four Operations / Induce

Nat
induce enrich Nat0 + Bool by
opns <: nat, nat — bool
eq : nat, nat — bool
vars m, n : nat
eqns 0 < n = true
succ(m) < 0 = false
succ(m) < succ(n) =m <n
eq(mn)=m<nAn<m
endth

Induce enable theory to extend the equations of a theory

» an equation holds for a variable n, if it holds for every
equation obtained by substituing a variable-free term

> to find equations holding in a theory created by induce, we
may prove by induction on the structure of terms
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Four Operations / Derive

Nat
derive
sort element, bool
opns equal, true, false
from Natl by
eqns element is nat
bool is bool
equal is eq
true is ftrue
false is false
endth
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Theory Constant / Theory Procedure / Local Theory
Definition

Besides the four primitive operations on theories, we should
enable the users to define his own operations. So we
introduce:

» Theory constant
» it enables users to give a name to a theory

» Theory procedure

» it takes theory as their parameters and producing a
theory as a result.

» its body use the primitive operations, and may call other
theory procedures (but no recursion).

» Local theory definition

» it defines a theory in the body of theory procedures
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Theory Constant / Local Theory Definition

const Nat =
induce let Nat0 =
theory sorts nat
opns O: nat
succ : nat — nat
endth
in enrich NatO + Bool by
opns <: nat, nat — bool
eq : nat, nat — bool
vars m, n : nat
eqns 0 < n = true
succ(m) < 0 = false
succ(m) < succ(n) =m <n
eg(mn)=m<nAn<m
endth
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Theory Procedure

Procedures can only accept a certain sort of theory as
parameter.

We use “meta-sort”as the formal parameter of a procedure.
The meta-sort is itself a theory, which denotes theories with a
certain property.

The actual parameter theory must include all the equations of
the meta-sort theory as rewritten under this operator to
operator function

Example:

Suppose we have some partially ordered set, and we can form
strings from its elements. Now we can develop a theory of
ordered strings for any partially ordered set. The partially
ordered set can be regarded as a theory parameter. The
meta-sort should be a theory of partial ord
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Theory Procedure Cont.

We can form strings from the elements of any set, so here the
meta-sort of string procedure is trival.

const Triv = theory sorts element endth

proc Strings (X: Triv)=
induce enrich X by

sorts string

opns unit : element — string
A :— string
. string, string — string

vars s, t, u : string

eqns A.S=S5
S« A=35s
(set)su=s.(t.u)

endth (OO E O



Theory Procedure Cont.

When we apply Strings procedure to Nat to get strings of
natural number, we need to associate the sorts and operators
of the meta-sort (Triv) of the formal parameter with those of
the actual parameter (Nat).

We need a sort to sort function and an operator to operator
function just as in derive.

strings ( Nat[element is nat] )
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Theory Procedure Cont.

To develop a theory of ordered strings, we need write the
procedure for ordered strings. This procedure need the theory
of partial order for use as a meta-sort.

const Poset =
enrich Bool by

sorts element

opns <: element, element — bool
eq : element, element — bool

vars x,y, z: element

egqns x < x = true
x<yANy<zA-(x<z)=false
eq(x, y) =x<yAy<x

endth
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Theory Procedure Cont.

proc OrderedStrings (P: Poset)=
induce enrich Strings(P) by
opns ordered : string — bool
vars x, y: element
s, t, u: string
eqns ordered(A) = tru
ordered(unit(x )) = true
ordered(unit(x), unit(y)) =
X<y
ordered(s . t.u) =
ordered(s.t)Nordered(t.u)
endth

OrderedStrings
( Nat [element is nat,< is <, eq is eq] )
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Questions?
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