
Putting Theories Together to Make

Speci�cation

Bingzhou Zheng

March 31, 2010

Theories / Structured Descriptions of theories

Why are we interested in theories?

I We need a theory to specify a problem before we can
develop a program to solve it.

I We need a theory to represent knowledge.

Why are we interested in structured descriptions of
theories?

I We �nd theories very hard to understand unless they have
a well-structured description.

I We attempt to represent knowledge as collections of
separate simple fragments.

Theory

The paper of Burstall and Goguen (1977) makes theories
many-sorted, and with provision for errors.

A many-sorted theory is given by:

I a set of sorts (including the sort of truth value)

I a set of operators (including true and false)

I a set of laws which the operators above must satisfy

Note:

I The laws take the form of equations with free variables
but no quanti�ers, which are implicitly universally
quanti�ed.

I The equations are closed under inference by re�exivity,
transitivity and symmetry of equality, and by substitution.

Language �Clear�

In Burstall and Goguen' paper (1977), they proposed the
language �Clear� as a tool

I to describe program speci�cation

I to serve to represent knowledge in a machine manipulable
form.

The language Clear uses the following theory-building
operations and mechanism to build theories.

Theory-Building Operations

To build a structured theory, we must build our theories up
from small intelligible pieces:

I the ability to write small and explicit theories, like

theory sorts · · ·
opns · · ·
eqns · · · endth

I four operations on theories enable us to build up theory
expressions denoting complex theories

I combine
I enrich
I induce
I derive

Four Operations / Combine

Nat0

theory sorts nat

opns 0 :→ nat

succ : nat → nat

eqns endth

Bool0

theory sorts bool

opns true :→ bool

false :→ bool

¬ : bool → bool

∧ : bool → bool

vars p : bool

eqns ¬true = false

¬false = true

false ∧ p = false

true ∧ p = p endth

Four Operations / Combine Cont.

+ is used as the combine operation

Bool0 + Nat0

theory sorts bool,nat

opns true :→ bool

false :→ bool

¬ : bool → bool

∧ : bool → bool

0 :→ nat

succ : nat → nat

vars p : bool

eqns ¬true = false

¬false = true

false ∧ p = false

true ∧ p = p

endth

Four Operations / Enrich

The whole express below expression denotes the new enriched
theory.

Nat1

enrich Bool0 + Nat0 by

opns ≤ : nat, nat → bool

eq : nat, nat → bool

vars m, n : nat

eqns 0 ≤ n = true

succ(m) ≤ 0 = false

succ(m) ≤ succ(n) = m ≤ n

eq(m, n) = m ≤ n ∧ n ≤ m

endth

Four Operations / Induce

Nat

induce enrich Nat0 + Bool by

opns ≤ : nat, nat → bool

eq : nat, nat → bool

vars m, n : nat

eqns 0 ≤ n = true

succ(m) ≤ 0 = false

succ(m) ≤ succ(n) = m ≤ n

eq(m, n) = m ≤ n ∧ n ≤ m

endth

Induce enable theory to extend the equations of a theory

I an equation holds for a variable n, if it holds for every

equation obtained by substituing a variable-free term

I to �nd equations holding in a theory created by induce, we

may prove by induction on the structure of terms

Four Operations / Derive

Nat

derive

sort element, bool

opns equal,true,false

from Nat1 by

eqns element is nat

bool is bool

equal is eq

true is true

false is false

endth

Theory Constant / Theory Procedure / Local Theory
De�nition

Besides the four primitive operations on theories, we should
enable the users to de�ne his own operations. So we
introduce:

I Theory constant

I it enables users to give a name to a theory

I Theory procedure

I it takes theory as their parameters and producing a

theory as a result.
I its body use the primitive operations, and may call other

theory procedures (but no recursion).

I Local theory de�nition

I it de�nes a theory in the body of theory procedures

Theory Constant / Local Theory De�nition

const Nat =

induce let Nat0 =

theory sorts nat

opns 0 : nat

succ : nat → nat

endth

in enrich Nat0 + Bool by

opns ≤ : nat, nat → bool

eq : nat, nat → bool

vars m, n : nat

eqns 0 ≤ n = true

succ(m) ≤ 0 = false

succ(m) ≤ succ(n) = m ≤ n

eq(m, n) = m ≤ n ∧ n ≤ m

endth

Theory Procedure

Procedures can only accept a certain sort of theory as
parameter.

We use �meta-sort�as the formal parameter of a procedure.
The meta-sort is itself a theory, which denotes theories with a
certain property.

The actual parameter theory must include all the equations of
the meta-sort theory as rewritten under this operator to
operator function

Example:

Suppose we have some partially ordered set, and we can form
strings from its elements. Now we can develop a theory of
ordered strings for any partially ordered set. The partially
ordered set can be regarded as a theory parameter. The
meta-sort should be a theory of partial orderings.

Theory Procedure Cont.

We can form strings from the elements of any set, so here the
meta-sort of string procedure is trival.

const Triv = theory sorts element endth

proc Strings (X: Triv)=

induce enrich X by

sorts string

opns unit : element → string

f :→ string

� : string , string → string

vars s, t, u : string

eqns f � s = s

s � f = s

(s � t) � u = s � (t � u)
endth

Theory Procedure Cont.

When we apply Strings procedure to Nat to get strings of
natural number, we need to associate the sorts and operators
of the meta-sort (Triv) of the formal parameter with those of
the actual parameter (Nat).

We need a sort to sort function and an operator to operator
function just as in derive.

strings (Nat[element is nat])

Theory Procedure Cont.

To develop a theory of ordered strings, we need write the
procedure for ordered strings. This procedure need the theory
of partial order for use as a meta-sort.

const Poset =

enrich Bool by

sorts element

opns ≤ : element, element → bool

eq : element, element → bool

vars x , y , z : element

eqns x ≤ x = true

x ≤ y ∧ y ≤ z ∧ ¬(x ≤ z) = false

eq(x , y) = x ≤ y ∧ y ≤ x

endth

Theory Procedure Cont.

proc OrderedStrings (P: Poset)=

induce enrich Strings(P) by

opns ordered : string → bool

vars x , y : element

s, t, u : string

eqns ordered(f) = true

ordered(unit(x)) = true

ordered(unit(x), unit(y)) =
x ≤ y

ordered(s � t � u) =
ordered(s �t)∧ordered(t �u)

endth

OrderedStrings

(Nat [element is nat,≤ is ≤, eq is eq])

Reference

PUTTING THEORIES TOGETHER TO MAKE
SPECIFICATION, R.M.Burstall and J.A.Goguen (1977)

THE SEMANTICS OF CLEAR, A SPECIFICATION
LANGUAGE, R.M.Burstall and J.A.Goguen (1979)

Questions?

