Putting Theories Together to Make
Specification

Bingzhou Zheng

March 31, 2010

Theories / Structured Descriptions of theories

Why are we interested in theories?

» We need a theory to specify a problem before we can
develop a program to solve it.

» We need a theory to represent knowledge.

Why are we interested in structured descriptions of
theories?

» We find theories very hard to understand unless they have
a well-structured description.

» We attempt to represent knowledge as collections of
separate simple fragments.

EEAREIARIIAREIAN GO R

Theory

The paper of Burstall and Goguen (1977) makes theories
many-sorted, and with provision for errors.

A many-sorted theory is given by:

» a set of sorts (including the sort of truth value)
» a set of operators (including true and false)

» a set of laws which the operators above must satisfy
Note:

» The laws take the form of equations with free variables
but no quantifiers, which are implicitly universally
quantified.

» The equations are closed under inference by reflexivity,
transitivity and symmetry of equality, and by substitution.

EEAREIARIIAREIAN GO R

Language “Clear”

In Burstall and Goguen' paper (1977), they proposed the
language “Clear” as a tool

» to describe program specification

> to serve to represent knowledge in a machine manipulable
form.

The language Clear uses the following theory-building
operations and mechanism to build theories.

EEAREIARIIAREIAN GO R

Theory-Building Operations

To build a structured theory, we must build our theories up
from small intelligible pieces:

» the ability to write small and explicit theories, like
theory sorts ---
opns - -
eqns --- endth

» four operations on theories enable us to build up theory
expressions denoting complex theories
» combine
» enrich

» induce
» derive

EEAREIARIIAREIAN GO R

Four Operations / Combine

NatO

theory sorts nat

Bool0
theory

opns

eqns

sorts
opns

vars
eqns

0 :— nat
succ . nat — nat
endth

bool

true : — bool
false : — bool
= : bool — bool
A : bool — bool
p : bool

—true = false
—false = true
false \ p = false

true Ap=p endthr T T F T

Four Operations / Combine Cont.

+ is used as the combine operation

Bool0 + NatO
theory sorts
opns

vars
eqns

endth

bool , nat

true : — bool
false : — bool
= : bool — bool
A : bool — bool
0 :— nat

succ : nat — nat
p : bool

—true = false
—false = true
false N\ p = false
true A\p=p

EEAREIARIIAREIAN GO R

Four Operations / Enrich

The whole express below expression denotes the new enriched
theory.

Nat1l
enrich BoolO + NatO by
opns <: nat, nat — bool
eq : nat, nat — bool
vars m, n : nat
eqns 0 < n = true
succ(m) < 0 = false
succ(m) < succ(n)=m<n
eqimn)=m<nAn<m
endth

EEAREIARIIAREIAN GO R

Four Operations / Induce

Nat
induce enrich Nat0 + Bool by
opns <: nat, nat — bool
eq : nat, nat — bool
vars m, n : nat
eqns 0 < n = true
succ(m) < 0 = false
succ(m) < succ(n) =m <n
eq(mn)=m<nAn<m
endth

Induce enable theory to extend the equations of a theory

» an equation holds for a variable n, if it holds for every
equation obtained by substituing a variable-free term

> to find equations holding in a theory created by induce, we
may prove by induction on the structure of terms

AL TN E_ERE]

Four Operations / Derive

Nat
derive
sort element, bool
opns equal, true, false
from Natl by
eqns element is nat
bool is bool
equal is eq
true is ftrue
false is false
endth

EEAREIARIIAREIAN GO R

Theory Constant / Theory Procedure / Local Theory
Definition

Besides the four primitive operations on theories, we should
enable the users to define his own operations. So we
introduce:

» Theory constant
» it enables users to give a name to a theory

» Theory procedure

» it takes theory as their parameters and producing a
theory as a result.

» its body use the primitive operations, and may call other
theory procedures (but no recursion).

» Local theory definition

» it defines a theory in the body of theory procedures
EEAREIARIIAREIAN GO R

Theory Constant / Local Theory Definition

const Nat =
induce let Nat0 =
theory sorts nat
opns O: nat
succ : nat — nat
endth
in enrich NatO + Bool by
opns <: nat, nat — bool
eq : nat, nat — bool
vars m, n : nat
eqns 0 < n = true
succ(m) < 0 = false
succ(m) < succ(n) =m <n
eg(mn)=m<nAn<m
endth
EEAREIARIIAREIAN GO R

Theory Procedure

Procedures can only accept a certain sort of theory as
parameter.

We use “meta-sort”as the formal parameter of a procedure.
The meta-sort is itself a theory, which denotes theories with a
certain property.

The actual parameter theory must include all the equations of
the meta-sort theory as rewritten under this operator to
operator function

Example:

Suppose we have some partially ordered set, and we can form
strings from its elements. Now we can develop a theory of
ordered strings for any partially ordered set. The partially
ordered set can be regarded as a theory parameter. The
meta-sort should be a theory of partial ord

T OO o

Theory Procedure Cont.

We can form strings from the elements of any set, so here the
meta-sort of string procedure is trival.

const Triv = theory sorts element endth

proc Strings (X: Triv)=
induce enrich X by

sorts string

opns unit : element — string
A :— string
. string, string — string

vars s, t, u : string

eqns A.S=S5
S« A=35s
(set)su=s.(t.u)

endth (OO E O

Theory Procedure Cont.

When we apply Strings procedure to Nat to get strings of
natural number, we need to associate the sorts and operators
of the meta-sort (Triv) of the formal parameter with those of
the actual parameter (Nat).

We need a sort to sort function and an operator to operator
function just as in derive.

strings (Nat[element is nat])

EEAREIARIIAREIAN GO R

Theory Procedure Cont.

To develop a theory of ordered strings, we need write the
procedure for ordered strings. This procedure need the theory
of partial order for use as a meta-sort.

const Poset =
enrich Bool by

sorts element

opns <: element, element — bool
eq : element, element — bool

vars x,y, z: element

egqns x < x = true
x<yANy<zA-(x<z)=false
eq(x, y) =x<yAy<x

endth

EEAREIARIIAREIAN GO R

Theory Procedure Cont.

proc OrderedStrings (P: Poset)=
induce enrich Strings(P) by
opns ordered : string — bool
vars x, y: element
s, t, u: string
eqns ordered(A) = tru
ordered(unit(x)) = true
ordered(unit(x), unit(y)) =
X<y
ordered(s . t.u) =
ordered(s.t)Nordered(t.u)
endth

OrderedStrings
(Nat [element is nat,< is <, eq is eq])

EEAREIARIIAREIAN GO R

Reference

PUTTING THEORIES TOGETHER TO MAKE
SPECIFICATION, R.M.Burstall and J.A.Goguen (1977)

THE SEMANTICS OF CLEAR, A SPECIFICATION
LANGUAGE, R.M.Burstall and J.A.Goguen (1979)

EEAREIARIIAREIAN GO R

Questions?

EESREINRIIARIIA NG R

