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Part 1

First-Order Logic
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What is First-Order Logic?

First-order logic is the study of statements about
individuals using functions, predicates, and quantification.

I First-order logic is also called first-order predicate logic
and first-order quantificational logic.

First-order logic is propositional logic plus:

I Terms that denote individuals.
I Predicates that are applied to terms.
I Quantifiers applied to individual variables.

First-order logic is “first-order” because quantification is
over individuals but not over higher-order objects such as
functions and predicates.

There are many versions of first-order logic.

We will define and employ a version of first-order logic
named FOL.
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Syntax of FOL: Languages

Let V be a fixed infinite set of symbols called variables.

A language of FOL is a triple L = (C,F ,P) where:

I C is a set of symbols called individual constants.
I F is a set of symbols called function symbols, each with

an assigned arity ≥ 1.
I P is a set of symbols called predicate symbols, each with

an assigned arity ≥ 1. P contains the binary predicate
symbol =.

I V, C, F , and P are pairwise disjoint.
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Syntax of FOL: Terms and Formulas

Let L = (C,F ,P) be a language of FOL.

A term of L is a string of symbols inductively defined by
the following formation rules:

I Each x ∈ V and a ∈ C is a term of L.
I If f ∈ F is n-ary and t1, . . . , tn are terms of L, then

f (t1, . . . , tn) is a term of L.

A formula of L is a string of symbols inductively defined
by the following formation rules:

I If p ∈ P is n-ary and t1, . . . , tn are terms of L, then
p(t1, . . . , tn) is a formula of L.

I If A and B are formulas of L and x ∈ V, then (¬A) and
(A ⇒ B), and (∀ x . A) are formulas of L.

=, ¬, ⇒, and ∀ are the logical constants of FOL.
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Syntax of FOL: Notational Definitions
(s = t) denotes = (s, t).
(s 6= t) denotes (¬(s = t)).
T denotes (∀ x . (x = x)).
F denotes (¬(T)).
(A ∨ B) denotes ((¬A) ⇒ B).
(A ∧ B) denotes (¬((¬A) ∨ (¬B))).
(A ⇔ B) denotes ((A ⇒ B) ∧ (B ⇒ A)).
(∃ x . A) denotes (¬(∀ x . (¬A)).
(� x1, . . . , xn . A) denotes (� x1 . (� x2, . . . , xn . A))

where n ≥ 2 and � ∈ {∀,∃}.
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Free and Bound Variables

The scope of a quantifier ∀ x or ∃ x in a formula ∀ x . B
or ∃ x . B , respectively, is the part of B that is not in a
subformula of B of the form ∀ x . C or ∃ x . C .

An occurrence of a variable x in a formula A is free if it is
not in the scope of a quantifier ∀ x or ∃ x ; otherwise the
occurrence of x in A is bound.

I An occurrence of a variable in a formula is either free or
bound but never both.

I A variable can be both bound and free in a formula.

A formula is closed if it contains no free variables.

A sentence is a closed formula.
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Substitution

Let x be a variable, t a term, and A a formula.

The substitution of t for x in A, written

A[x 7→ t] or A[t/x ],

is the result of replacing each free occurrence of x in A
with t.

Suppose A is ∀ y . x = y and t is f (y). Then the
substitution A[x 7→ t] is said to capture y .

I Variable captures often produce unsound results.

t is free for x in A if no free occurrence of x in A is in the
scope of ∀ y or ∃ y for any variable y occurring t.

I Hence, t is free for x in A if the substitution A[x 7→ t]
does not result in any variable captures.
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Semantics of FOL: Models

A model for a language L = (C,F ,P) of FOL is a pair
M = (D, I ) where D is a nonempty domain (set) and I is
a total function on C ∪ F ∪ P such that:

I If a ∈ C, I (a) ∈ D.
I If f ∈ F is n-ary, I (f ) : Dn → D and I (f ) is total.
I If p ∈ P is n-ary, I (p) : Dn → {t, f} and I (p) is total.
I I (=) is idD , the identity predicate on D.

A variable assignment into M is a function that maps
each x ∈ V to an element of D.

Given a variable assignment ϕ into M , x ∈ V , and d ∈ D,
let ϕ[x 7→ d ] be the variable assignment ϕ′ into M such
ϕ′(x) = d and ϕ′(y) = ϕ(y) for all y 6= x .
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Semantics of FOL: Valuation Function
The valuation function for a model M for a language
L = (C,F ,P) of FOL is the binary function V M that satisfies
the following conditions for all variable assignments ϕ into M
and all terms t and formulas A of L:

1. Let t ∈ V . Then V M
ϕ (t) = ϕ(t).

2. Let t ∈ C. Then V M
ϕ (t) = I (t).

3. Let t = f (t1, . . . , tn). Then
V M

ϕ (t) = I (f )(V M
ϕ (t1), . . . , V

M
ϕ (tn)).

4. Let A = p(t1, . . . , tn). Then
V M

ϕ (A) = I (p)(V M
ϕ (t1), . . . , V

M
ϕ (tn)).

5. Let A = (¬A′). If V M
ϕ (A′) = f, then V M

ϕ (A) = t;
otherwise V M

ϕ (A) = f.
6. Let A = (A1 ⇒ A2). If V M

ϕ (A1) = t and V M
ϕ (A2) = f,

then V M
ϕ (A) = f; otherwise V M

ϕ (A) = t.
7. Let A = (∀ x . A′). If V M

ϕ[x 7→d ](A
′) = t for all d ∈ D, then

V M
ϕ (A) = t; otherwise V M

ϕ (A) = f.
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Notes on Quantifiers

The universal and existential quantifiers are duals of each
other:

¬(∀ x . A) ⇔ ∃ x . ¬A, ¬(∃ x . A) ⇔ ∀ x . ¬A.

Changing the order of quantifiers in a formula usually
changes the meaning of the formula.

I As a rule, ∀ x . ∃ y . A 6⇔ ∃ y . ∀ x . A.

In a formula of the form ∀ x . ∃ y . A, the value of the
existentially quantified variable y depends on the value of
the universally quantified variable x .

A universal statement like “All rodents are mammals” is
formalized as ∀ x . rodent(x) ⇒ mammal(x).

An existential statement like “Some mammals are
rodents” is formalized as ∃ x . mammal(x) ∧ rodent(x).
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Algebras as Models

If L = (C,F ,P) is a finite language of FOL, we may
present the language as

L = (c1, . . . , ck , f1, . . . , fm, p1, . . . , pn)

where C = {c1, . . . , ck}, F = {f1, . . . , fm}, and
P = {p1, . . . , pn}.
An algebra

(D, d1, . . . , dk , g1, . . . , gm, q1, . . . .qn)

can then be considered a model for L if M = (D, I ) is a
model for L where:

1. I (ci ) = di for 1 ≤ i ≤ k.
2. I (fi ) = gi for 1 ≤ i ≤ m.
3. I (pi ) = qi for 1 ≤ i ≤ n.
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Metatheorems of FOL

Completeness Theorem (Gödel 1930). There is a sound
and complete proof system for FOL.

Compactness Theorem. Let Σ be a set of formulas of a
language of FOL. If Σ is finitely satisfiable, then Σ is
satisfiable.

Undecidability Theorem (Church 1936). First-order logic
is undecidable. That is, for some language L of FOL, the
problem of whether or not a given formula of L is valid is
undecidable.
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A Hilbert-Style Proof System (1/2)

Let H be the following Hilbert-style proof system for a
language L of FOL:

The logical axioms of H are all formulas of L that are
instances of the following schemas:

I For propositional logic:
A1: A ⇒ (B ⇒ A).
A2: (A ⇒ (B ⇒ C )) ⇒ ((A ⇒ B) ⇒ (A ⇒ C )).
A3: (¬A ⇒ ¬B) ⇒ (B ⇒ A).

I For quantification:
A4: (∀ x . (A ⇒ B)) ⇒ (A ⇒ (∀ x . B))

provided x is not free in A.
A5: (∀ x . A) ⇒ A[x 7→ t]

provided t is free for x in A.
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A Hilbert-Style Proof System (2/2)
I For equality:

A6: ∀ x . x = x .
A7: ∀ x , y . x = y ⇒ y = x .
A8: ∀ x , y , z . (x = y ∧ y = z) ⇒ x = z .
A9: ∀ x1, . . . , xn, y1, . . . , yn .

(x1 = y1 ∧ · · · ∧ xn = yn) ⇒
f (x1, . . . , xn) = f (y1, . . . , yn)

where f ∈ F is n-ary.
A10: ∀ x1, . . . , xn, y1, . . . , yn .

(x1 = y1 ∧ · · · ∧ xn = yn) ⇒
(p(x1, . . . , xn) ⇔ p(y1, . . . , yn))

where p ∈ P is n-ary.

The rules of inference of H are:

MP: From A and (A ⇒ B), infer B.
GEN: From A, infer (∀ x . A), for any x ∈ V.
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More Metatheorems of FOL

Deduction Theorem. Σ∪{A} `H B implies Σ `H A ⇒ B .

Soundness Theorem. Σ `H A implies Σ |= A.

Completeness Theorem. Σ |= A implies Σ `H A.

Soundness and Completeness Theorem (second form).
Σ is consistent in H iff Σ is satisfiable.
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Theories

A theory in FOL is a pair T = (L, Γ) where:

1. L is a language of FOL.
2. Γ is a set of sentences of L.

Examples:

I Theories of orders, lattices, and boolean algebras.
I Theories of monoids and groups.
I Presburger arithmetic.
I First-order Peano arithmetic.
I Theory of real closed fields.
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The Theory of Boolean Algebras

Let BA = (L, Γ) be the theory of FOL where L is defined
below and Γ is the set of sentences of L on the next page.

L = (+, ∗, , 0, 1, =) is a language of FOL such that +
and ∗ are binary function symbols, is a unary function
symbol, and 0 and 1 are individual constants.

A boolean algebra is a model of BA.

I Named after the logician George Boole (1815-1864).
I There are infinitely many nonisomorphic models of BA.
I If (B,+, ∗, , 0, 1) is a boolean algebra, then (B,≤) is a

complemented distributive lattice with a top and bottom
where a ≤ b means a = a ∗ b ∧ a + b = b.

Examples:

I M1 = ({T,F},∨,∧,¬,F,T,⇔).
I M2 = ({S | S ⊆ U},∪,∩, , ∅,U,=) where U is any set.

BA is used to model electronic circuits.
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The Axioms of BA

Associativity Laws
∀ x , y , z . (x + y) + z = x + (y + z)
∀ x , y , z . (x ∗ y) ∗ z = x ∗ (y ∗ z)

Commutativity Laws
∀ x , y . x + y = y + x ∀ x , y . x ∗ y = y ∗ x

Distributive Laws
∀ x , y , z . x + (y ∗ z) = (x + y) ∗ (x + z)
∀ x , y , z . x ∗ (y + z) = (x ∗ y) + (x ∗ z)

Identity Laws
∀ x . x + 0 = x ∀ x . x ∗ 1 = x

Complement Laws
∀ x . x + x = 1 ∀ x . x ∗ x = 0
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Theorems of BA

Idempotent Laws
∀ x . x + x = x ∀ x . x ∗ x = x

Absorption Laws
∀ x , y . x + (x ∗ y) = x ∀ x , y . x ∗ (x + y) = x

De Morgan Laws
∀ x , y . x + y = x ∗ y
∀ x , y . x ∗ y = x + y

Laws of Zero and One
∀ x . x + 1 = 1 ∀ x , y . x ∗ 0 = 0
0 = 1 1 = 0

Law of Double Complement
∀ x . x = x
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Peano Arithmetic

PA = (L, Γ) is (second-order) Peano arithmetic (devised
by G. Peano, 1889).

L is a language of second-order logic with an individual
constant symbol 0 and a unary function symbol S .

I 0 is intended to represent the number zero.
I S is intended to represent the successor function, i.e.,

S(a) means a + 1.

Γ is the following set of axioms:

I 0 has no predecessor. ∀ x . ¬(0 = S(x)).
I S is injective. ∀ x , y . S(x) = S(y) ⇒ x = y .
I Induction principle.
∀P . (P(0) ∧ ∀ x . P(x) ⇒ P(S(x))) ⇒ ∀ x . P(x).

+ and ∗ can be defined in PA.

PA is categorical, i.e, it has exactly one model up to
isomorphism (Dedekind, 1888).
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First-Order Peano Arithmetic
PA′ = (L′, Γ′) is first-order Peano arithmetic.
L′ is a language of FOL with an individual constant
symbol 0, a unary function symbol S , and binary function
symbols + and ∗.
Γ′ is the following set of axioms:

I ∀ x . ¬(S(x) = 0).
I ∀ x , y . S(x) = S(y) ⇒ x = y .
I ∀ x . x + 0 = x .
I ∀ x , y . x + S(y) = S(x + y).
I ∀ x . x ∗ 0 = 0.
I ∀ x , y . x ∗ S(y) = (x ∗ y) + x .
I Each universal closure A of a formula of the form

(B[x 7→ 0] ∧ (∀ x . B ⇒ B[x 7→ S(x)])) ⇒ ∀ x . B

where B is a formula of L′.

PA′ is a noncategorical approximation of Peano
arithmetic with infinitely many “nonstandard” models.
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Language and Theory Extensions

Let Li = (C i ,F i ,P i) be a language of FOL and let
Ti = (Li , Γi) be a theory of FOL for i = 1, 2.

L1 is a sublanguage of L2, and L2 is a super language or
an extension of L1, written L1 ≤ L2, if C1 ⊆ C2,
F1 ⊆ F2, and P1 ⊆ P2.

T1 is a subtheory of T2, and T2 is a super theory or an
extension of T1, written T1 ≤ T2, if L1 ≤ L2 and Γ1 ⊆ Γ2.
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Conservative Theory Extension

Let T = (L, Γ) and T ′ = (L′, Γ′) be theories of FOL.

T ′ is a conservative extension of T if T ≤ T ′ and, for
every formula A of L, T ′ |= A implies T |= A.

I A conservative extension of a theory adds new
machinery to the theory without compromising the
theory’s original machinery.

The obligation of a purported conservative extension is a
formula that implies that the extension is conservative.

There are two important kinds of conservative extensions
that add new vocabulary to a theory:

1. Definitions.
2. Profiles.
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Definitions

A definition is a conservative extension that adds a new
symbol s and a defining axiom A(s) to a theory T .

I In some logics, the defining axiom can have the form
s = D (where s does not occur in D).

The obligation of the definition is

∃ ! x . A(x).

The symbol s can usually be eliminated from any new
expression of involving s.
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Profiles

A profile is a conservative extension that adds a set
{s1, . . . , sn} of symbols and a profiling axiom
A(s1, . . . , sn) to a theory T .

The obligation of the profile is

∃ x1, . . . , xn . A(x1, . . . , xn).

The symbols s1, . . . , sn cannot usually be eliminated from
expressions involving s1, . . . , sn.

Profiles can be used for introducing:

I Underspecified objects.
I Recursively defined functions.
I Algebras.
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Attributes of a Practical Logic: FOL

1. Formal Syntax. Yes.

2. Precise Semantics. Yes.

3. Familiarity. Yes.

4. Faithfulness. Low.

5. Theoretical Expressivity. Low.

6. Practical Expressivity. Very low.

7. Multiparadigm Reasoning. No.

8. Metalogical Reasoning. No.

9. Axiomatizability. Yes.

10. Implementability. Yes.
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Ways of Making FOL More Practical

Make the logic many-sorted by allowing several sort of
individuals.

Add definite and indefinite description.

Modify the semantics of FOL to admit undefined
expressions and partial functions.
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Part 2

Simple Type Theory
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Type Theory

Russell introduced a logic now known as the ramified
theory of types in 1908 to serve as a foundation for
mathematics.

I Included a hierarchy of types to avoid set-theoretic
paradoxes such Russell’s paradox and semantic
paradoxes such as Richard’s paradox.

I Employed as the logic of Whitehead and Russell’s
Principia Mathematica.

I Not used today due to its high complexity.

Chwistek and Ramsey suggested in the 1920s a simplified
version of the ramified theory of types called the simple
theory of types or, more briefly, simple theory theory.

Church published in 1940 a formulation of simple theory
theory with lambda-notation and lambda-conversion.
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Intuitionistic Type Theory

Several intuitionistic or constructive type theories have
been developed.

Examples:

I Martin-Löf’s Intuitionistic Type Theory (1980).
I Coquand and Huet’s Calculus of Constructions (1984).

Many intuitionistic type theories exploit the Curry-Howard
Formulas-as-Types Isomorphism.

I Formulas serve as types or specifications.
I Terms serve as proofs or programs.
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What is Simple Type Theory?

A simple, elegant, highly expressive, and practical logic.

I Familiar to some computer scientists but not to many
mathematicians, engineers, and other scientists.

Most popular form of type theory.

I Types are used to classify expressions by value and
control the formation of expressions.

I Classical: nonconstructive, 2-valued.
I Higher order: quantification over functions.
I Can be viewed as a “function theory”.

Natural extension of first-order logic.

I Based on the same principles as first-order logic.
I Includes nth-order logic for all n ≥ 1.
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Who needs Simple Type Theory?

An understanding of simple type would be beneficial to anyone
who needs to work with or apply mathematical logic. This is
particularly true for:

Engineers who need to write (and read) precise
specifications.

Computer scientists who employ functional programming
languages such as Lisp, ML, and Haskell.

Software engineers who use higher-order theorem proving
systems to model and analyze software systems.

Mathematics students who are studying the foundations
of mathematics or model theory.
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Purpose of this Presentation

Present a pure form of simple type theory named STT.

Show the virtues of simple type theory using STT.

Argue that simple type theory is an attractive alternative
to first-order logic for practical-minded scientists,
engineers, and mathematicians.
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History
1908 Russell

Ramified theory of types.
1910 Russell, Whitehead

Principia Mathematica.
1920s Chwistek, Ramsey

Simple theory of types (simple type theory).
1920–30s Carnap, Gödel, Tarski, Quine

Detailed formulations of simple type theory.
1940 Church

Simple type theory with lambda-notation.
1950 Henkin

General models and completeness theorem.
1963 Henkin, Andrews

Concise formulation based on equality.
1980-90s HOL, IMPS, Isabelle, ProofPower, PVS, TPS

Higher-order theorem proving systems.
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Syntax of STT: Types

A type of STT is defined by the following rules:

T1
type[ι]

(Type of individuals)

T2
type[∗]

(Type of truth values)

T3
type[α], type[β]

type[(α → β)]
(Function type)

Let T denote the set of types of STT.
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Syntax of STT: Symbols

The logical symbols of STT are:

I Function application: @ (hidden).
I Function abstraction: λ.
I Equality: =.
I Definite description: I (capital iota).
I An infinite set V of symbols called variables.

A language of STT is a pair L = (C, τ) where:

I C is a set of symbols called constants.
I τ : C → T is a total function.
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Syntax of STT: Expressions
An expression E of type α of a STT language L = (C, τ)
is defined by the following rules:

E1
x ∈ V, type[α]

exprL[(x : α), α]
(Variable)

E2
c ∈ C

exprL[c , τ(c)]
(Constant)

E3
exprL[A, α], exprL[F , (α → β)]

exprL[F (A), β]
(Application)

E4
x ∈ V, type[α], exprL[B, β]

exprL[(λ x : α . B), (α → β)]
(Abstraction)

E5
exprL[E1, α], exprL[E2, α]

exprL[(E1 = E2), ∗]
(Equality)

E6
x ∈ V, type[α], exprL[A, ∗]

exprL[(I x : α . A), α]
(Definite description)
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Syntax of STT: Conventions

Eα denotes an expression E of type α.

Parentheses and the types of variables may be dropped
when meaning is not lost.
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Semantics of STT: Standard Models

A standard model for a language L = (C, τ) of STT is a
triple M = (D, I , e) where:

I D = {Dα : α ∈ T } is a set of nonempty domains (sets).
I D∗ = {t, f}, the domain of truth values.
I Dα→β is the set of all functions from Dα to Dβ.
I I maps each c ∈ C to an element of Dτ(c).
I e maps each α ∈ T to a member of Dα.

A variable assignment into M is a function that maps
each expression (x : α) to an element of Dα.

Given a variable assignment ϕ into M , an expression
(x : α), and d ∈ Dα, let ϕ[(x : α) 7→ d ] be the variable
assignment ϕ′ into M such that ϕ′((x : α)) = d and
ϕ′(v) = ϕ(v) for all v 6= (x : α).
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Semantics of STT: Valuation Function

The valuation function for a standard model M = (D, I , e) for
a language L = (C, τ) of STT is the binary function V M that
satisfies the following conditions for all variable assignments ϕ
into M and all expressions E of L:

1. Let E is (x : α). Then V M
ϕ (E ) = ϕ((x : α)).

2. Let E ∈ C. Then V M
ϕ (E ) = I (E ).

3. Let E be F (A). Then V M
ϕ (E ) = V M

ϕ (F )(V M
ϕ (A)).

4. Let E be (λ x : α . Bβ). Then V M
ϕ (E ) is the f : Dα → Dβ

such that, for each d ∈ Dα, f (d) = V M
ϕ[(x :α) 7→d ](Bβ).

5. Let E be (E1 = E2). If V M
ϕ (E1) = V M

ϕ (E2), then
V M

ϕ (E ) = t; otherwise V M
ϕ (E ) = f.

6. Let E be (I x : α . A). If there is a unique d ∈ Dα such
that V M

ϕ[(x :α) 7→d ](A) = t, then V M
ϕ (E ) = d ; otherwise

V M
ϕ (E ) = e(α).
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Notational Definitions

T means (λ x : ∗ . x) = (λ x : ∗ . x).
F means (λ x : ∗ . T) = (λ x : ∗ . x).
(¬A∗) means A∗ = F.
(Aα 6= Bα) means ¬(Aα = Bα).
(A∗ ∧ B∗) means (λ f : ∗ → (∗ → ∗) . f (T)(T)) =

(λ f : ∗ → (∗ → ∗) . f (A∗)(B∗)).
(A∗ ∨ B∗) means ¬(¬A∗ ∧ ¬B∗).
(A∗ ⇒ B∗) means ¬A∗ ∨ B∗.
(A∗ ⇔ B∗) means A∗ = B∗.
(∀ x : α . A∗) means (λ x : α . A∗) = (λ x : α . T).
(∃ x : α . A∗) means ¬(∀ x : α . ¬A∗).
⊥α means I x : α . x 6= x .
if(A∗, Bα, Cα) means I x : α . (A∗ ⇒ x = Bα) ∧

(¬A∗ ⇒ x = Cα)
where x does not occur in A∗, Bα, or Cα
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Expressivity

Theorem. There is a faithful interpretation of nth-order
logic in STT for all n ≥ 1.

Most mathematical notions can be directly and naturally
expressed in STT.

Examples:

equiv-rel =
λ p : (ι → (ι → ∗)) .
∀ x : ι . p(x)(x) ∧
∀ x , y : ι . p(x)(y) ⇒ p(y)(x) ∧
∀ x , y , z : ι . (p(x)(y) ∧ p(y)(z)) ⇒ p(x)(z)

compose =
λ f : (ι → ι) . λ g : (ι → ι) . λ x : ι . f (g(x))

inv-image =
λ f : (ι → ι) . λ s : (ι → ∗) .

I s ′ : (ι → ∗) . ∀ x : ι . s ′(x) ⇔ s(f (x))
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Peano Arithmetic

Let PA = (L, Γ) be the theory of STT such that:
L = ({0, S}, τ) where τ(0) = ι and τ(S) = ι → ι.
Γ is the set of the following three formulas:

1. 0 has no predecessor: ∀ x : ι . 0 6= S(x).
2. S is injective: ∀ x , y : ι . S(x) = S(y) ⇒ x = y .
3. Induction principle:

∀P : ι → ∗ .
P(0) ∧ (∀ x : ι . P(x) ⇒ P(S(x))) ⇒ ∀ x : ι . P(x).

Theorem (Dedekind, 1888). PA has (up to isomorphism)
a unique standard model M = (D, I , e)
where Dι = {0, 1, 2, . . .}.
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Complete Ordered Field (1/3)

Let COF = (L, Γ) be the theory of STT such that:
L = ({+, 0,−, ·, 1, −1, pos, <,≤, ub, lub}, τ) where

Constant c Type τ(c)
0,1 ι
−, −1 ι → ι
pos ι → ∗
+, · ι → (ι → ι)
<,≤ ι → (ι → ∗)

ub, lub ι → ((ι → ∗) → ∗)
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Complete Ordered Field (2/3)

Γ is the set of the following eighteen formulas:

1. ∀ x , y , z : ι . (x + y) + z = x + (y + z).
2. ∀ x , y : ι . x + y = y + x .
3. ∀ x : ι . x + 0 = x .
4. ∀ x : ι . x + (−x) = 0.
5. ∀ x , y , z : ι . (x · y) · z = x · (y · z).
6. ∀ x , y : ι . x · y = y · x .
7. ∀ x : ι . x · 1 = x .
8. ∀ x : ι . x 6= 0 ⇒ x · x−1 = 1.
9. 0 6= 1.

10. ∀ x , y , z : ι . x · (y + z) = (x · y) + (x · z).
11. ∀ x : ι . (x = 0 ∧ ¬pos(x) ∧ ¬pos(−x)) ∨

(x 6= 0 ∧ pos(x) ∧ ¬pos(−x)) ∨
(x 6= 0 ∧ ¬pos(x) ∧ pos(−x)).
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Complete Ordered Field (3/3)

12. ∀ x , y : ι . (pos(x) ∧ pos(y)) ⇒ pos(x + y).
13. ∀ x , y : ι . (pos(x) ∧ pos(y)) ⇒ pos(x · y).
14. ∀ x , y : ι . x < y ⇔ pos(y − x).
15. ∀ x , y : ι . x ≤ y ⇔ (x < y ∨ x = y).
16. ∀ x : ι . ∀ s : ι → ∗ . ub(x)(s) = ∀ y : ι . s(y) ⇒ y ≤ x .
17. ∀ x : ι . ∀ s : ι → ∗ .

lub(x)(s) = (ub(x)(s)∧ (∀ y : ι . ub(y)(s) ⇒ x ≤ y)).
18. ∀ s : ι → ∗ .

∃ x : ι . s(x) ∧ ∃ x : ι . ub(x)(s) ⇒ ∃ x : ι . lub(x)(s).

Theorem. COF has (up to isomorphism) a unique
standard model M = (D, I , e) where Dι = R, the set of
real numbers.
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Incompleteness of STT

Theorem. There is no sound and complete proof system
for STT.

Proof. Suppose P is a sound and complete proof system
for STT. By the soundness of P and Gödel’s
Incompleteness Theorem, there is a sentence A such that
(1) M |= A, where M is the unique standard model for
PA (up to isomorphism), and (2) PA 6`P A. By the
completeness of P, (2) implies PA 6|= A and hence
M 6|= A since M is the only standard model of PA, which
contradicts (1). �
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A Hilbert-Style Proof System for STT (1/2)

Axioms:

A1 (Truth Values)
∀ f : ∗ → ∗ . (f (T∗) ∧ f (F∗)) ⇔ (∀ x : ∗ . f (x)).

A2 (Leibniz’ Law)
∀ x , y : α . (x = y) ⇒ (∀ p : α → ∗ . p(x) ⇔ p(y)).

A3 (Extensionality)
∀ f , g : α → β . (f = g) = (∀ x : α . f (x) = g(x)).

A4 (Beta-Reduction)
(λ x : α . Bβ)(Aα) = Bβ[(x : α) 7→ Aα]

provided Aα is free for x in Bβ.
A5 (Proper Definite Description)

(∃ ! x : α . A) ⇒ A[(x : α) 7→ (I x : α . A)].
A6 (Improper Definite Description)
¬(∃ ! x : α . A) ⇒ (I x : α . A) = ⊥α.
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A Hilbert-Style Proof System for STT (2/2)

Rule of inference:

R (Equality Substitution)
From Aα = Bα and C∗ infer the result of replacing one
occurrence of Aα in C∗ by an occurrence of Bα.

Call this proof system A.

I Due to Andrews, 1963.

Theorem (Jensen, 1969). A plus an axiom of infinity is
equiconsistent with bounded Zermelo set theory.
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General Models

A general structure for a language L = (C, τ) of STT is a
triple M = (D, I , e) where:

I D = {Dα : α ∈ T } is a set of nonempty domains (sets).
I D∗ = {t, f}, the domain of truth values.
I Dα→β is some set of functions from Dα to Dβ .
I I maps each c ∈ C to an element of Dτ(c).
I e maps each α ∈ T to a member of Dα.

M is a general model for L if there is a binary function
V M that satisfies the same conditions as the valuation
function for a standard model.

A general model is a nonstandard model if it is not a
standard model.
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Completeness of STT

Theorem (Henkin, 1950). There is a sound and complete
proof system for STT with respect to general models.

Corollary. STT is compact with respect to general
models.

Theorem (Andrews, 1963). A is a sound and complete
proof system for STT with respect to general models.
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Attributes of a Practical Logic: STT

1. Formal Syntax. Yes.

2. Precise Semantics. Yes.

3. Familiarity. Yes.

4. Faithfulness. Moderate.

5. Theoretical Expressivity. High.

6. Practical Expressivity. Moderate.

7. Multiparadigm Reasoning. Functions and sets.

8. Metalogical Reasoning. No.

9. Axiomatizability. Yes.

10. Implementability. Yes.
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Ways of Making STT More Practical

Make the logic many-sorted by allowing several types of
individuals, e.g., ι1, . . . , ιn.

Add machinery for basic mathematical objects such as
sets, tuples, and lists.

Add indefinite description.

Modify the semantics of STT to admit undefined
expressions and partial functions.

Admit polymorphic operators like (λ x : t . x) and
user-defined type constructors by introducing type
variables.

Extend the type system of STT to support subtypes and
dependent types.
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Theorem Proving Systems Based on Variants of

STT

HOL (Gordon).

IMPS (Farmer, Guttman, Thayer).

Isabelle (Paulson).

ProofPower (Lemma 1).

PVS (Owre, Rushby, Shankar).

TPS (Andrews).
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Conclusion
Simple type theory is a logic that is effective for practice
as well as theory—unlike first-order logic.

I More expressive and more convenient.
I Closer to mathematical practice.
I Based on the same principles as first-order logic.
I Includes the full machinery of first-order logic.
I Integrates predicate logic, function theory, and type

theory.

We recommend that simple type theory be incorporated
into:

I Logic courses offered by mathematics departments.
I The undergraduate curriculum for computer science and

software engineering students.
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The Seven Virtues

Virtue 1: STT has a simple and highly uniform syntax.

Virtue 2: The semantics of STT is based on a small
collection of well-established ideas.

Virtue 3: STT is a highly expressive logic.

Virtue 4: STT admits categorical theories of infinite
structures.

Virtue 5: There is a proof system for STT that is simple,
elegant, and powerful.

Virtue 6: Henkin’s general models semantics enables the
techniques of first-order model theory to be applied to
STT and illuminates the distinction between standard and
nonstandard models.

Virtue 7: There are practical variants of STT that can be
effectively implemented.
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Part 3

Zermelo-Fraenkel (ZF) Set Theory
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Set Theory as a Logic

A set theory is a good candidate for a logic since almost
all mathematical objects and concepts can be defined in
terms of sets.

Informal set theories (so-called naive set theories) capture
the basic concepts of a set but admit the set-theoretic
paradoxes like Russell’s paradox.

Some formal set theories (such as BA) capture only
certain aspects about sets (algebraic concepts) and are
thus not suitable to serve as general purpose logics.

A formal set theory suitable for use as a formal logic is
relatively complicated because it needs:

1. A mechanism to avoid the set-theoretic paradoxes.
2. Powerful tools for building sets.
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Formalizations of Set Theory

The standard formalization of set theory is known as
Zermelo-Fraenkel (ZF) set theory [Zermelo, 1908].

Other major formalizations:

I von-Neumann-Bernays-Gödel (NBG) set theory
[von Neumann, 1925].

I Morse-Kelley (MK) set theory [Kelley, 1955].
I Tarski-Grothendieck set theory [Tarski, 1938].
I New Foundations (NF) [Quine, 1937].
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ZF
Proposed by Zermelo in 1908.

I Developed to avoid the set-theoretic paradoxes.
I Improvements made by Fraenkel (1922) and Skolem

(1923).

ZF is formalized as a theory in first-order logic.

I Language contains two predicate symbols = and ∈.
I Not finitely axiomatizable.

Proper classes (e.g., the collection of all sets) are not
first-class objects.

I They cannot be denoted by terms.
I They are used in the metatheory.
I They can be denoted by predicate symbols.

ZF is an exceedingly rich theory.

I Total functions are effectively polymorphic.

W. M. Farmer CAS 760 Winter 2010: 02 Three Traditional Logics 64/73



NBG

Proposed by von Neumann in 1925.

I Improvements made by R. Robinson (1937), Bernays
(1937–54), and Gödel (1940).

NBG is formalized as a theory in first-order logic.

I Has the same language as ZF.
I Finitely axiomatizable!

Proper classes are first-class objects.

NBG is closely related to ZF.

I NBG is a conservative extension of ZF.
I NBG is consistent iff ZF is consistent.
I NBG and ZF share the same intuitive model of the

iterated hierarchy of sets.
I NBG and ZF have very similar axioms.
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ZF Axioms (1/2)

1. Extensionality.

∀ x , y . ((∀ u . u ∈ x ⇔ u ∈ y) ⇒ x = y).

2. Foundation.

∀ x . (x 6= ∅ ⇒ ∃ y . (y ∈ x ∧ x ∩ y = ∅)).

3. Empty Set.

∃ x . ¬(∃ y . y ∈ x).

4. Pairs.

∀ x , y . ∃ z . ∀ u . (u ∈ z ⇔ (u = x ∨ u = y)).

5. Sum Set.

∀ x . ∃ y . ∀ u . (u ∈ y ⇔ ∃ z . (u ∈ z ∧ z ∈ x)).

6. Power Set.

∀ x . ∃ y . ∀ u . (u ∈ y ⇔ u ⊆ x).
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ZF Axioms (2/2)

7. Infinity.

∃ x . (∅ ∈ x ∧ ∀ u . (u ∈ x ⇒ u ∪ {u} ∈ x)).

8. Restricted Comprehension Schema.
Each universal closure of

∀ x . ∃ y . ∀ u . (u ∈ y ⇔ (u ∈ x ∧ A))

where A is any formula in which y does not occur.

9. Replacement Schema.
Each universal closure of

(∀w . (∀ x . ∃ ! y . A) ⇒
∃ z . ∀ y . (y ∈ z ⇔ ∃ x . (x ∈ w ∧ A))).

where A is any formula in which z does not occur..

10. Choice.

∀ x . ∃ y . fun(y) ∧ dom(y) = x ∧
∀ u . ((u ∈ x ∧ u 6= ∅) ⇒ y(u) ∈ u).

W. M. Farmer CAS 760 Winter 2010: 02 Three Traditional Logics 67/73



Remarks on the ZF Axioms

The Restricted Comprehension Schema is restricted to
avoid the set-theoretic paradoxes like Russell’s paradox.

Zermelo-Frankel set theory (ZF) has axioms 1–9.

Zermelo set theory (Z) has axioms 1-8.

ZF with the Axiom of Choice (ZFC) has axioms 1-10.

The Axiom of Foundation is dispensable and could be
replaced with an “antifoundation” axiom.

The Axiom of Empty Set can be proved from the other
axioms.
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Axioms for NBG Set Theory

1. Definition of V , the universal class.

2. Axioms 1 and 2.

3. Relativizations to V of axioms 3–7.

4. NBG Class Comprehension Schema.
Each universal closure of

∃ x . ∀ u . (u ∈ x ⇔ (u ∈ V ∧ AV )).

where A is any formula in which x does not occur and AV

is A relativized to V .

5. A single formula version of the Axiom of Replacement.

6. Various versions of the Axiom of Choice.
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Axioms for MK Set Theory

Same axioms as NBG except NBG Comprehension is
replaced with the stronger:

MK Class Comprehension Schema.
Each universal closure of

∃ x . ∀ u . (u ∈ x ⇔ (u ∈ V ∧ A)).

where A is any formula in which x does not occur.

MK is a nonconservative extension of NBG.

MK is not finitely axiomatizable.
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General Set Theory (GST)

GST has the following axioms:

1. Extensionality.
2. Restricted Comprehension Schema.
3. Adjunction.

∀ x , y . ∃ z . ∀ u . (u ∈ z ⇔ (u ∈ x ∨ x = y)).

GST is mutually interpretable with First-Order Peano
Arithmetic.

GST is not finitely axiomatizable.
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Attributes of a Practical Logic: ZF

1. Formal Syntax. Yes.

2. Precise Semantics. Yes.

3. Familiarity. Yes.

4. Faithfulness. Moderate.

5. Theoretical Expressivity. Extremely high.

6. Practical Expressivity. Low.

7. Multiparadigm Reasoning. Indirect.

8. Metalogical Reasoning. No.

9. Axiomatizability. Yes.

10. Implementability. Yes.

W. M. Farmer CAS 760 Winter 2010: 02 Three Traditional Logics 72/73



Ways of Making ZF More Practical

Add machinery for functions.

Add a type system.

Add definite description and indefinite description.

Modify the semantics of ZF to admit undefined
expressions and partial functions.
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