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Types

A type system can make a logic much more practical than
it would otherwise be.

Types can be used in a logic to:

1. Restrict the scope of variables.
2. Restrict the scope of operators.
3. Control the formation of expressions.
4. Classify expressions by their values.

Important issues:

I How is type checking performed?
I Can types be hidden?
I Can types be inferred?
I Is type checking/inference decidable?
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Type Systems

Possible components of a type system:

I Type constants including base types.
I Type constructors including dependent type constructors.
I A universal type.
I Possibly empty types.
I Type variables.
I Subtypes.
I Dependent product and sum types.

Implementation approaches:

I The type system is built into the logic.
I The type system is simulated using predicates.
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Functions

It is crucial that a general-purpose logic for mathematics
and computing has strong support for reasoning with
functions:

I Function application.
I Function abstraction.
I Function types.
I Partial functions.
I Higher-order functions.
I Quantification over functions.
I Recursive definitions.

Important issue: How should improper applications of
partial functions be handled?
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Basic Mathematical Objects

Basic mathematical objects include truth values,
numbers, and the following compound values:

I Sets.
I Functions.
I Relations.
I Tuples.
I Sequences.

A practical logic needs strong support for basic
mathematical objects:

I Appropriate types.
I Constructors and selectors for compound values.
I Quantification over compound values.
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Partial Functions and Undefined Terms

Partial functions and undefined terms are commonplace in
mathematics and computing.

Sources of undefinedness:

1. Improper function applications.
2. Improper definite descriptions.
3. Improper indefinite descriptions.

There are many approaches for handling partial functions
and undefinedness.

There is a traditional approach to undefinedness widely
employed in mathematics but rarely used in computing.

Most approaches fall into one of the following three
categories:

1. Approaches in a traditional logic.
2. Approaches in a 2-valued logic with undefinedness.
3. Approaches in a 3-valued logic with undefinedness.
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Definite and Indefinite Description

Benefits of definite and indefinite description:

I Values can be described directly and naturally.
I Definite description allows definitions to be explicit.
I Indefinite description allows profiles to be explicit.

Important issue: What value should an improper definite
or indefinite description have?

Definite and indefinite description works extremely well in
a logic with undefinedness.

I Improper definite and indefinite descriptions are
undefined.

I Partial functions can be defined using function
abstraction and definite description.
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Definition Principles
Notational definitions

Definitions and profiles of:

I Constants.
I Type constants and constructors.
I Logical constants and other operators.
I Variable binders.

Recursive definitions.

I Primitive recursion.
I Monotone functionals.

Algebraic data types.

I Enumerated types.
I Tuple and record types.
I Disjoint union types.
I Inductive data types.

Important issue: How is conservativity ensured?
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Two-Dimensional Notations

Matrices.

I Can concisely represent functions and relations.
I Can be manipulated as algebraic objects.

Graphs.

I Can present complex relationships graphically.
I Can finitely represent infinite structures.

Tables.

I Used to represent functions and relations.
I Championed by David Parnas.
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Reasoning about Syntax
Reasoning about the semantics of expressions is often
done via reasoning about the syntax of expressions.

Examples:

I Pattern matching.
I Substitution.
I Rules of inference.
I Symbolic computation.

Reasoning about syntax is usually performed in the
metalogic.

It is possible, but problematic, to reason about syntax
directly in the logic.
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Reasoning about Syntax in a Logic

A system for reasoning about syntax in a logic needs:

1. A representation of expressions as values in the logic’s
semantics.

2. A quotation operation that associates an expression with
its representation.

3. An evaluation operation that associates a representation
of an expression with the value of the expression.

Representation approaches:

I Abstract: An inductive data type.
I Concrete: An encoding of expressions into numbers

(Gödel numbers), trees, or sets.

Important issues:

I How is the liar paradox avoided?
I How are expression fragments handled?
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