
CAS 760 Winter 2010

03 Techniques for Enhancing
Traditional Logics

William M. Farmer

Department of Computing and Software
McMaster University

23 March 2010



Types

A type system can make a logic much more practical than
it would otherwise be.

Types can be used in a logic to:

1. Restrict the scope of variables.
2. Restrict the scope of operators.
3. Control the formation of expressions.
4. Classify expressions by their values.

Important issues:

I How is type checking performed?
I Can types be hidden?
I Can types be inferred?
I Is type checking/inference decidable?

W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 2/11



Type Systems

Possible components of a type system:

I Type constants including base types.
I Type constructors including dependent type constructors.
I A universal type.
I Possibly empty types.
I Type variables.
I Subtypes.
I Dependent product and sum types.

Implementation approaches:

I The type system is built into the logic.
I The type system is simulated using predicates.

W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 3/11



Functions

It is crucial that a general-purpose logic for mathematics
and computing has strong support for reasoning with
functions:

I Function application.
I Function abstraction.
I Function types.
I Partial functions.
I Higher-order functions.
I Quantification over functions.
I Recursive definitions.

Important issue: How should improper applications of
partial functions be handled?

W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 4/11



Basic Mathematical Objects

Basic mathematical objects include truth values,
numbers, and the following compound values:

I Sets.
I Functions.
I Relations.
I Tuples.
I Sequences.

A practical logic needs strong support for basic
mathematical objects:

I Appropriate types.
I Constructors and selectors for compound values.
I Quantification over compound values.

W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 5/11



Partial Functions and Undefined Terms

Partial functions and undefined terms are commonplace in
mathematics and computing.

Sources of undefinedness:

1. Improper function applications.
2. Improper definite descriptions.
3. Improper indefinite descriptions.

There are many approaches for handling partial functions
and undefinedness.

There is a traditional approach to undefinedness widely
employed in mathematics but rarely used in computing.

Most approaches fall into one of the following three
categories:

1. Approaches in a traditional logic.
2. Approaches in a 2-valued logic with undefinedness.
3. Approaches in a 3-valued logic with undefinedness.

W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 6/11



Definite and Indefinite Description

Benefits of definite and indefinite description:

I Values can be described directly and naturally.
I Definite description allows definitions to be explicit.
I Indefinite description allows profiles to be explicit.

Important issue: What value should an improper definite
or indefinite description have?

Definite and indefinite description works extremely well in
a logic with undefinedness.

I Improper definite and indefinite descriptions are
undefined.

I Partial functions can be defined using function
abstraction and definite description.

W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 7/11



Definition Principles
Notational definitions

Definitions and profiles of:

I Constants.
I Type constants and constructors.
I Logical constants and other operators.
I Variable binders.

Recursive definitions.

I Primitive recursion.
I Monotone functionals.

Algebraic data types.

I Enumerated types.
I Tuple and record types.
I Disjoint union types.
I Inductive data types.

Important issue: How is conservativity ensured?
W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 8/11



Two-Dimensional Notations

Matrices.

I Can concisely represent functions and relations.
I Can be manipulated as algebraic objects.

Graphs.

I Can present complex relationships graphically.
I Can finitely represent infinite structures.

Tables.

I Used to represent functions and relations.
I Championed by David Parnas.

W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 9/11



Reasoning about Syntax
Reasoning about the semantics of expressions is often
done via reasoning about the syntax of expressions.

Examples:

I Pattern matching.
I Substitution.
I Rules of inference.
I Symbolic computation.

Reasoning about syntax is usually performed in the
metalogic.

It is possible, but problematic, to reason about syntax
directly in the logic.

W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 10/11



Reasoning about Syntax in a Logic

A system for reasoning about syntax in a logic needs:

1. A representation of expressions as values in the logic’s
semantics.

2. A quotation operation that associates an expression with
its representation.

3. An evaluation operation that associates a representation
of an expression with the value of the expression.

Representation approaches:

I Abstract: An inductive data type.
I Concrete: An encoding of expressions into numbers

(Gödel numbers), trees, or sets.

Important issues:

I How is the liar paradox avoided?
I How are expression fragments handled?

W. M. Farmer CAS 760 Winter 2010: 03 Techniques for Enhancing Traditional Logics 11/11


