

CAS 760 Winter 2010

04 Two Practiced-Oriented Logics

William M. Farmer

Department of Computing and Software
McMaster University

5 April 2010

Outline

- Part 1: LUTINS: The Logic of IMPS
- Part 2: Chiron: A Logic Engineered for Practical Use

Part 1

LUTINS

What is IMPS?

- IMPS is an **higher-order theorem proving system** developed at The MITRE Corporation by W. Farmer, J. Guttman, and J. Thayer.
- Principal goals:
 - ▶ Mechanize mathematical reasoning.
 - ▶ Be useful to a wide range of people.
- Approach:
 - ▶ Support traditional mathematical techniques.
 - ▶ Human oriented instead of machine oriented.
- Main application areas:
 - ▶ Hardware and software development.
 - ▶ Mathematics education.
- Available free with public license (first released in 1993).
 - ▶ Written in T and Common Lisp.
 - ▶ User interface based on XEmacs.
 - ▶ IMPS web site: <http://imps.mcmaster.ca/>.

Distinguishing Characteristics of IMPS

1. Logic that admits partial functions and undefined terms.
 - ▶ Closely corresponds to mathematical practice.
2. Proofs that combine deduction and computation.
 - ▶ IMPS proof system is eclectic.
 - ▶ Computation plays an essential role in IMPS proofs.
3. Little theories method for organizing mathematics.
 - ▶ Essential for formalizing large portions of mathematics.

Goals for the IMPS Logic

- **Familiarity:** 2-valued, classical, predicate logic.
- **Expressivity:** Higher-order quantification.
- **Support for functions:**
 - ▶ Higher-order and partial functions.
 - ▶ λ -notation and λ -conversion.
 - ▶ Definite description.
- **Simple type system:**
 - ▶ No explicit polymorphism.
 - ▶ Sort system for classifying expressions by their values.

LUTINS, the Logic of IMPS

- Satisfies all the goals for the IMPS logic.
- A version of Church's simple type theory with:
 - ▶ Traditional approach to undefinedness.
 - ▶ Additional constructors, including a definite description operator.
 - ▶ Sort system for classifying expressions by their values.
- Laws of predicate logic are modified slightly.
 - ▶ Instantiation and beta-reduction are restricted to defined expressions.
 - ▶ Undefined expressions are indiscernible.

Sorts in LUTINS (1/2)

- A **sort** α is a syntactic object intended to denote a nonempty set D_α of values.
- Sorts serve as subtypes.
 - ▶ α is a **subsort** of β , written $\alpha \ll \beta$, if $D_\alpha \subseteq D_\beta$.
 - ▶ **Types** are the sorts maximal in the partial order \ll .
- Hierarchy of sorts:
 - ▶ **Atomic sorts** like **N**, **Z**, **Q**, **R**.
 - ▶ **Compound sorts** of the form $\alpha_1 \times \cdots \times \alpha_n \rightarrow \beta$.
- A compound sort $\alpha_1 \times \cdots \times \alpha_n \rightarrow \beta$ denotes the set of partial functions from $D_{\alpha_1} \times \cdots \times D_{\alpha_n}$ to D_β .
 - ▶ Sorts are **covariant** with respect \rightarrow : If $\alpha \ll \alpha'$ and $\beta \ll \beta'$, then $\alpha \rightarrow \beta \ll \alpha' \rightarrow \beta'$.
- **Examples:** **Z** \ll **R** and $(\mathbf{Z} \rightarrow \mathbf{Z}) \ll (\mathbf{R} \rightarrow \mathbf{R})$.

Sorts in LUTINS (2/2)

- Every expression e is assigned a sort $\sigma(e)$ according to its syntax (regardless of whether it is defined or not).
 - ▶ $\sigma(e) = \alpha$ means the value of e is in D_α if e is defined.
- An expression can “reside” in many other sorts.
 - ▶ $(e_\alpha \downarrow \beta)$ denotes $\exists x : \beta . x = e_\alpha$.
 - ▶ $(e_\alpha \downarrow)$ denotes $(e_\alpha \downarrow \alpha)$.
- As subtypes, sorts are very convenient for expressing mathematics.

Constructors

Propositional
the-true
the-false
and
or
if-form
implies
iff
not

Binders
forall
forsome
lambda
iota
iota-p
with

Other
apply-operator
equality
if
is-defined
defined-in
undefined

Quasi-Constructors

- Quasi-constructors are user-definable constructors.
 - ▶ Polymorphic (like ordinary constructors).
 - ▶ Used as theory-independent constants.
- Implemented as macro/abbreviations.
- Example: Quasi-equality defined by:

$$e_1 \simeq e_2 \equiv (e_1 \downarrow \vee e_2 \downarrow \supset e_1 = e_2)$$

IMPS Logic References

1. W. M. Farmer, “A partial functions version of Church’s simple theory of types”, *Journal of Symbolic Logic*, 55:1269–1291, 1990.
2. W. M. Farmer, “A simple type theory with partial functions and subtypes”, *Annals of Pure and Applied Logic*, 64:211–240, 1993.
3. W. M. Farmer, “Theory interpretation in simple type theory”, in: J. Heering et al., eds., *Higher-Order Algebra, Logic, and Term Rewriting, Lecture Notes in Computer Science*, Vol. 816, pp. 96–123, Springer-Verlag, 1994.
4. W. M. Farmer, “Andrews’ type system with undefinedness”, in: C. Benzmüller, C. Brown, J. Siekmann, and R. Statman, eds., *Reasoning in Simple Type Theory: Festschrift in Honor of Peter B. Andrews on his 70th Birthday, Studies in Logic*, pp. 223–242, College Publications, 2008.

Part 2

Chiron

What is Chiron?

- Chiron is a logic based on NBG set theory that is intended to be a practical, general-purpose logic for mechanizing mathematics.
- Major design goals:
 - ▶ Based on familiar and well-understood principles.
 - ▶ High theoretical and practical expressivity.
- It is a logic with undefinedness.
- It has a type system with a universal type, dependent types, dependent function types, subtypes, and possibly empty types.
- It has a facility for reasoning about the syntax of expressions that employs quotation and evaluation.
- Ungrounded terms are undefined, and ungrounded formulas (like the liar paradox) are false.

Values

- D_v is the domain of **sets**.
 D_c is the domain of **classes**.
 D_s is the domain of **superclasses**.
 - ▶ $D_v \subseteq D_c \subseteq D_s$.
- T, F are the **truth values**.
 - ▶ $T, F \notin D_s$.
- \perp is the **undefined value**.
 - ▶ $\perp \notin D_s \cup \{T, F\}$.
- For $n \geq 0$, an **n -ary operation** is a total mapping

$$o : D_1 \times \cdots \times D_n \rightarrow D_{n+1}$$

where D_i is D_s , $D_c \cup \{\perp\}$, or $\{T, F\}$ for all i with $1 \leq i \leq n+1$.

- ▶ An operation $o \notin D_s \cup \{T, F, \perp\}$.

Expressions

- An **expression** of Chiron is inductively defined by the following two formation rules:

Expr-1 (Atomic expression)

$$\frac{s \in \mathcal{S}}{\mathbf{expr}[s]}$$

Expr-2 (Compound expression)

$$\frac{\mathbf{expr}[e_1], \dots, \mathbf{expr}[e_n]}{\mathbf{expr}[(e_1, \dots, e_n)]} \text{ where } n \geq 0.$$

- There are four sorts of **proper expressions**:
 1. **Operators** denote operations.
 2. **Types** denotes superclasses.
 3. **Terms** denote classes and the undefined value.
 4. **Formulas** denote truth values.
- **Improper expressions** are expressions that are not proper expressions; they are nondenoting.

Proper Expressions

Proper Expression

$(\text{op}, o, k_1, \dots, k_{n+1})$

$(\text{op-app}, (\text{op}, o, k_1, \dots, k_{n+1}), e_1, \dots, e_n)$

(var, x, α)

$(\text{type-app}, \alpha, a)$

$(\text{dep-fun-type}, (\text{var}, x, \alpha), \beta)$

$(\text{fun-app}, f, a)$

$(\text{fun-abs}, (\text{var}, x, \alpha), b)$

(if, A, b, c)

$(\text{exist}, (\text{var}, x, \alpha), B)$

$(\text{def-des}, (\text{var}, x, \alpha), B)$

$(\text{indef-des}, (\text{var}, x, \alpha), B)$

(quote, e)

(eval, a, k)

Sort

operator

type/term/formula

term

type

type

term

term

term

formula

term

term

term

type/term/formula

Compact Notation

Compact Notation	Official Notation
$(o :: k_1, \dots, k_{n+1})$	$(\text{op}, o, k_1, \dots, k_{n+1})$
$O(e_1, \dots, e_n)$	$(\text{op-app}, O, e_1, \dots, e_n)$
$(x : \alpha)$	(var, x, α)
$\alpha(a)$	$(\text{type-app}, \alpha, a)$
$(\Lambda x : \alpha . \beta)$	$(\text{dep-fun-type}, (\text{var}, x, \alpha), \beta)$
$f(a)$	$(\text{fun-app}, f, a)$
$(\lambda x : \alpha . b)$	$(\text{fun-abs}, (\text{var}, x, \alpha), b)$
$\text{if}(A, b, c)$	(if, A, b, c)
$(\exists x : \alpha . B)$	$(\text{exist}, (\text{var}, x, \alpha), B)$
$(\iota x : \alpha . B)$	$(\text{def-des}, (\text{var}, x, \alpha), B)$
$(\epsilon x : \alpha . B)$	$(\text{indef-des}, (\text{var}, x, \alpha), B)$
$[e]$	(quote, e)
$\llbracket a \rrbracket_k$	(eval, a, k)

Additional Compact Notation

Compact Notation	Defining Expression
T	(true :: formula)()
F	(false :: formula)()
V	(set :: type)()
C	(class :: type)()
E	(expr :: type)()
$(a \in b)$	(in :: V, C, formula)(a, b)
$(a =_{\alpha} b)$	(term-equal :: C, C, type, formula)(a, b, α)
$(a = b)$	($a =_C b$)
$(\neg A)$	(not :: formula, formula)(A)
$(A \vee B)$	(or :: formula, formula, formula)(A, B)
$(\forall x : \alpha . A)$	($\neg(\exists x : \alpha . (\neg A))$)

Constructions

- A **construction** is a set that represents the construction of an expression.
- (quote, e) denotes the construction that represents the expression e .
- A proper expression e has two different meanings:
 1. The **semantic value** of e is the value denoted by e itself.
 2. The **syntactic value** of e is the construction denoted by (quote, e) .
- $(\text{eval}, a, \text{type})$ denotes the value of the type that is represented by the construction denoted by the term a .
- (eval, a, α) denotes the value of the term of type α that is represented by the construction denoted by the term a .
- $(\text{eval}, a, \text{formula})$ denotes the value of the formula that is represented by the construction denoted by the term a .

Example: Differentiation Rule

Meaning formula as an informal formula schema:

$$\text{derivative}(\lambda x : \text{real} . E) = (\lambda x : \text{real} . \text{diff}(E))$$

where E is a rational polynomial.

Meaning formula in Chiron:

$$\forall e : \text{rational-polynomials} .$$

$$\text{derivative}(\lambda x : \text{real} . \llbracket e \rrbracket_{\text{real}}) = (\lambda x : \text{real} . \llbracket \text{diff}(e) \rrbracket_{\text{real}})$$

An instance of the meaning formula:

$$\begin{aligned} \text{derivative}(\lambda x : \text{real} . \llbracket \lceil x^2 + 3x \rceil \rrbracket_{\text{real}}) = \\ (\lambda x : \text{real} . \llbracket \text{diff}(\lceil x^2 + 3x \rceil) \rrbracket_{\text{real}}) \end{aligned}$$

which reduces to

$$\text{derivative}(\lambda x : \text{real} . x^2 + 3x) = (\lambda x : \text{real} . 2x + 3)$$

Example: Law of Beta Reduction

Expressed as an informal formula schema:

$$(\lambda x : \alpha . b)(a) \simeq b[(x : \alpha) \mapsto a]$$

where a is free for $(x : \alpha)$ in b .

Expressed as a single formula in Chiron:

$\forall e : E_{te} .$

$(\text{is-redex}(e) \wedge$

$\text{free-for}(\text{redex-arg}(e), \text{redex-var}(e), \text{redex-body}(e)))$

\supset

$\llbracket e \rrbracket_{te} \simeq \llbracket \text{sub}(\text{redex-arg}(e), \text{redex-var}(e), \text{redex-body}(e)) \rrbracket_{te}$

Chiron References

1. W. M. Farmer, *Chiron: A Set Theory with Types, Undefinedness, Quotation, and Evaluation*, SQRL Report No. 38, 132 pp., McMaster University, 2007 (revised 2010).
2. W. M. Farmer, “Biform theories in Chiron”, in: M. Kauers, M. Kerber, R. R. Miner, and W. Windsteiger, eds., *Towards Mechanized Mathematical Assistants, Lecture Notes in Computer Science*, Vol. 4573, pp. 66–79, Springer-Verlag, 2007.
3. W. M. Farmer, “Chiron: A multi-paradigm logic”, in: R. Matuszewski and A. Zalewska, eds., *From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar and Rhetoric*, 10(23):1–19, 2007.