
CAS 760 Winter 2010

04 Two Practiced-Oriented Logics

William M. Farmer

Department of Computing and Software
McMaster University

5 April 2010

Outline

Part 1: LUTINS: The Logic of IMPS

Part 2: Chiron: A Logic Engineered for Practical Use

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 2/23

Part 1

LUTINS

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 3/23

What is IMPS?

IMPS is an higher-order theorem proving system
developed at The MITRE Corporation by W. Farmer,
J. Guttman, and J. Thayer.
Principal goals:

I Mechanize mathematical reasoning.
I Be useful to a wide range of people.

Approach:
I Support traditional mathematical techniques.
I Human oriented instead of machine oriented.

Main application areas:
I Hardware and software development.
I Mathematics education.

Available free with public license (first released in 1993).
I Written in T and Common Lisp.
I User interface based on XEmacs.
I IMPS web site: http:imps.mcmaster.ca/.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 4/23

http:imps.mcmaster.ca/

Distinguishing Characteristics of IMPS

1. Logic that admits partial functions and undefined terms.

I Closely corresponds to mathematical practice.

2. Proofs that combine deduction and computation.

I IMPS proof system is eclectic.
I Computation plays an essential role in IMPS proofs.

3. Little theories method for organizing mathematics.

I Essential for formalizing large portions of mathematics.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 5/23

Goals for the IMPS Logic

Familiarity: 2-valued, classical, predicate logic.

Expressivity: Higher-order quantification.

Support for functions:

I Higher-order and partial functions.
I λ-notation and λ-conversion.
I Definite description.

Simple type system:

I No explicit polymorphism.
I Sort system for classifying expressions by their values.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 6/23

LUTINS, the Logic of IMPS

Satisfies all the goals for the IMPS logic.

A version of Church’s simple type theory with:

I Traditional approach to undefinedness.
I Additional constructors, including a definite description

operator.
I Sort system for classifying expressions by their values.

Laws of predicate logic are modified slightly.

I Instantiation and beta-reduction are restricted to defined
expressions.

I Undefined expressions are indiscernible.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 7/23

Sorts in LUTINS (1/2)

A sort α is a syntactic object intended to denote a
nonempty set Dα of values.

Sorts serve as subtypes.

I α is a subsort of β, written α � β, if Dα ⊆ Dβ.
I Types are the sorts maximal in the partial order �.

Hierarchy of sorts:

I Atomic sorts like N, Z, Q, R.
I Compound sorts of the form α1 × · · · × αn ⇀ β.

A compound sort α1 × · · · × αn ⇀ β denotes the set of
partial functions from Dα1 × · · · × Dαn to Dβ.

I Sorts are covariant with respect ⇀: If α � α′ and
β � β′, then α ⇀ β � α′ ⇀ β′.

Examples: Z � R and (Z → Z) � (R → R).

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 8/23

Sorts in LUTINS (2/2)

Every expression e is assigned a sort σ(e) according to its
syntax (regardless of whether it is defined or not).

I σ(e) = α means the value of e is in Dα if e is defined.

An expression can “reside” in many other sorts.

I (eα ↓ β) denotes ∃ x : β . x = eα.
I (eα ↓) denotes (eα ↓ α).

As subtypes, sorts are very convenient for expressing
mathematics.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 9/23

Constructors

Propositional Binders Other
the-true forall apply-operator
the-false forsome equality
and lambda if
or iota is-defined
if-form iota-p defined-in
implies undefined
iff
not with

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 10/23

Quasi-Constructors

Quasi-constructors are user-definable constructors.

I Polymorphic (like ordinary constructors).
I Used as theory-independent constants.

Implemented as macro/abbreviations.

Example: Quasi-equality defined by:

e1 ' e2 ≡ (e1 ↓ ∨ e2 ↓ ⊃ e1 = e2)

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 11/23

IMPS Logic References
1. W. M. Farmer, “A partial functions version of Church’s

simple theory of types”, Journal of Symbolic Logic,
55:1269–1291, 1990.

2. W. M. Farmer, “A simple type theory with partial
functions and subtypes”, Annals of Pure and Applied
Logic, 64:211–240, 1993.

3. W. M. Farmer, “Theory interpretation in simple type
theory”, in: J. Heering et al., eds., Higher-Order Algebra,
Logic, and Term Rewriting, Lecture Notes in Computer
Science, Vol. 816, pp. 96–123, Springer-Verlag, 1994.

4. W. M. Farmer, “Andrews’ type system with
undefinedness”, in: C. Benzmüller, C. Brown, J.
Siekmann, and R. Statman, eds., Reasoning in Simple
Type Theory: Festschrift in Honor of Peter B. Andrews
on his 70th Birthday, Studies in Logic, pp. 223–242,
College Publications, 2008.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 12/23

Part 2

Chiron

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 13/23

What is Chiron?

Chiron is a logic based on NBG set theory that is
intended to be a practical, general-purpose logic for
mechanizing mathematics.

Major design goals:

I Based on familiar and well-understood principles.
I High theoretical and practical expressivity.

It is a logic with undefinedness.

It has a type system with a universal type, dependent
types, dependent function types, subtypes, and possibly
empty types.

It has a facility for reasoning about the syntax of
expressions that employs quotation and evaluation.

Ungrounded terms are undefined, and ungrounded
formulas (like the liar paradox) are false.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 14/23

Values

Dv is the domain of sets.
Dc is the domain of classes.
Ds is the domain of superclasses.

I Dv ⊆ Dc ⊆ Ds.

t, f are the truth values.

I t, f 6∈ Ds.

⊥ is the undefined value.

I ⊥ 6∈ Ds ∪ {t, f}.
For n ≥ 0, an n-ary operation is a total mapping

o : D1 × · · · × Dn → Dn+1

where Di is Ds , Dc ∪ {⊥}, or {t, f} for all i with
1 ≤ i ≤ n + 1.

I An operation o 6∈ Ds ∪ {t, f,⊥}.
W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 15/23

Expressions
An expression of Chiron is inductively defined by the
following two formation rules:

Expr-1 (Atomic expression)

s ∈ S
expr[s]

Expr-2 (Compound expression)

expr[e1], . . . , expr[en]

expr[(e1, . . . , en)]
where n ≥ 0.

There are four sorts of proper expressions:

1. Operators denote operations.
2. Types denotes superclasses.
3. Terms denote classes and the undefined value.
4. Formulas denote truth values.

Improper expressions are expressions that are not proper
expressions; they are nondenoting.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 16/23

Proper Expressions

Proper Expression Sort
(op, o, k1, . . . , kn+1) operator
(op-app, (op, o, k1, . . . , kn+1), e1, . . . , en) type/term/formula
(var, x , α) term
(type-app, α, a) type
(dep-fun-type, (var, x , α), β) type
(fun-app, f , a) term
(fun-abs, (var, x , α), b) term
(if, A, b, c) term
(exist, (var, x , α), B) formula
(def-des, (var, x , α), B) term
(indef-des, (var, x , α), B) term
(quote, e) term
(eval, a, k) type/term/formula

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 17/23

Compact Notation

Compact Notation Official Notation
(o :: k1, . . . , kn+1) (op, o, k1, . . . , kn+1)
O(e1, . . . , en) (op-app, O, e1, . . . , en)
(x : α) (var, x , α)
α(a) (type-app, α, a)
(Λ x : α . β) (dep-fun-type, (var, x , α), β)
f (a) (fun-app, f , a)
(λ x : α . b) (fun-abs, (var, x , α), b)
if(A, b, c) (if, A, b, c)
(∃ x : α . B) (exist, (var, x , α), B)
(ι x : α . B) (def-des, (var, x , α), B)
(ε x : α . B) (indef-des, (var, x , α), B)
dee (quote, e)
[[a]]k (eval, a, k)

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 18/23

Additional Compact Notation

Compact Notation Defining Expression
T (true :: formula)()
F (false :: formula)()
V (set :: type)()
C (class :: type)()
E (expr :: type)()
(a ∈ b) (in :: V, C, formula)(a, b)
(a =α b) (term-equal :: C, C, type, formula)(a, b, α)
(a = b) (a =C b)
(¬A) (not :: formula, formula)(A)
(A ∨ B) (or :: formula, formula, formula)(A, B)
(∀ x : α . A) (¬(∃ x : α . (¬A)))

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 19/23

Constructions

A construction is a set that represents the construction of
an expression.

(quote, e) denotes the construction that represents the
expression e.

A proper expression e has two different meanings:

1. The semantic value of e is the value denoted by e itself.
2. The syntactic value of e is the construction denoted by

(quote, e).

(eval, a, type) denotes the value of the type that is
represented by the construction denoted by the term a.

(eval, a, α) denotes the value of the term of type α that is
represented by the construction denoted by the term a.

(eval, a, formula) denotes the value of the formula that is
represented by the construction denoted by the term a.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 20/23

Example: Differentiation Rule

Meaning formula as an informal formula schema:

derivative(λ x : real . E) = (λ x : real . diff(E))

where E is a rational polynomial.

Meaning formula in Chiron:

∀ e : rational-polynomials .

derivative(λ x : real . [[e]]real) = (λ x : real . [[diff(e)]]real)

An instance of the meaning formula:

derivative(λ x : real . [[dx2 + 3xe]]real) =

(λ x : real . [[diff(dx2 + 3xe)]]real)

which reduces to

derivative(λ x : real . x2 + 3x) = (λ x : real . 2x + 3)

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 21/23

Example: Law of Beta Reduction

Expressed as an informal formula schema:

(λ x : α . b)(a) ' b[(x : α) 7→ a]

where a is free for (x : α) in b.

Expressed as a single formula in Chiron:

∀ e : Ete .

(is-redex(e) ∧
free-for(redex-arg(e), redex-var(e), redex-body(e)))

⊃
[[e]]te ' [[sub(redex-arg(e), redex-var(e), redex-body(e))]]te

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 22/23

Chiron References

1. W. M. Farmer, Chiron: A Set Theory with Types,
Undefinedness, Quotation, and Evaluation, SQRL Report
No. 38, 132 pp., McMaster University, 2007 (revised
2010).

2. W. M. Farmer, “Biform theories in Chiron”, in:
M. Kauers, M. Kerber, R. R. Miner, and W. Windsteiger,
eds., Towards Mechanized Mathematical Assistants,
Lecture Notes in Computer Science, Vol. 4573,
pp. 66–79, Springer-Verlag, 2007.

3. W. M. Farmer, “Chiron: A multi-paradigm logic”, in:
R. Matuszewski and A. Zalewska, eds., From Insight to
Proof: Festschrift in Honour of Andrzej Trybulec, Studies
in Logic, Grammar and Rhetoric, 10(23):1–19, 2007.

W. M. Farmer CAS 760 Winter 2010: 04 Two Practice-Oriented Logics 23/23

