

CADE-22 Tutorial

Logics with Undefinedness

William M. Farmer

Department of Computing and Software
McMaster University
Hamilton, Ontario, Canada

McGill University
Montreal, Quebec, Canada
2 August 2009

Outline

- Part 1: The Nature of Undefinedness.
- Part 2: First-Order Logic with Undefinedness.
- Part 3: Other Logics with Undefinedness.
- Part 4: Implementing a Logic with Undefinedness
- Conclusion.
- References.

Part 1

The Nature of Undefinedness

What is Undefinedness?

- A mathematical term is **undefined** if it has no prescribed meaning or if it denotes a value that does not exist.
- Undefined terms are commonplace in mathematics and computer science.
- Sources of undefinedness:

1. Improper function applications:

$\frac{17}{0}$, $\sqrt{-4}$, $\tan(\frac{\pi}{2})$, $\lim_{x \rightarrow 0} \sin(\frac{1}{x})$, $\text{top}(\text{empty_stack})$

2. Improper definite descriptions:

“**the** x such that $x^2 = 4$ ”

3. Improper indefinite descriptions:

“**some** x such $x^2 = -4$ ”

Partial Functions

- A **partial function** f has:
 1. A **domain of definition** D_f consisting of the values at which it is defined.
 2. A **domain of application** D_f^* consisting of the values to which it may be applied.
- An application $f(a)$ is **undefined** if $a \notin D_f$.
- f is **total** if $D_f = D_f^*$ and **strictly partial** if $D_f \subset D_f^*$.
- There are two views of partial functions:
 1. A total function is a true function, while a strictly partial function is a broken function.
 2. A partial function is a general kind of a function, while a total function is a special kind of function.
- The first view is dominate in computer science, but the second view is dominate in mathematics.

Five Examples

1. The definition of the function that returns the top of a stack.
2. The definition of the division function $/ : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$x/y = x * y^{-1}.$$

3. The formula “ $f(2, 3)$ is defined” where $f : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$f(x, y) = \sqrt{\sqrt{x + y} - \sqrt{x - y}}.$$

4. The trigonometric identity

$$\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 + \tan(x) * \tan(y)}.$$

5. The following theorem about limits: For all $f : \mathbf{R} \rightarrow \mathbf{R}$, $a \in \mathbf{R}$,

$$\lim_{x \rightarrow a^-} f(x) = \lim_{x \rightarrow a^+} f(x) \text{ implies } \lim_{x \rightarrow a} f(x) \text{ exists.}$$

Definite Description

- A **definite description** is a term of the form
“**the** x such that A holds”.
- In logic, a definite description is often written as $\iota x . A$.
 - ▶ Example: $\text{max}(s) = \iota m . m \in s \wedge (\forall x . x \in s \Rightarrow x \leq m)$.
- The use of definite description is quite common in mathematics.
- Definite descriptions naturally lead to undefined terms such as:
 - ▶ $\iota x . x \neq x$.
 - ▶ $\iota x . x^2 = 2$.
- Definite descriptions can be eliminated as shown by B. Russell in his famous 1905 paper “**On Denoting**”.
- Definite description is thus a source of **practical expressivity**, but not **theoretical expressivity**.

Indefinite Description

- An **indefinite description** is a term of the form
“**some** x such that A holds”.
- In logic, an indefinite description is often written as $\epsilon x . A$.
- The use of indefinite description is common in mathematics and computer science.
- Indefinite descriptions naturally lead to undefined terms such as:
 - ▶ $\epsilon x . x \neq x$.
 - ▶ $\epsilon x . x^2 = -2$.
- Indefinite descriptions cannot be eliminated in the same way as definite descriptions.
- Indefinite description entails the **axiom of choice**.
- **Universal and existential quantification** can be defined using indefinite description.

The Trouble with Traditional Logics

- In traditional logics **terms are always defined**.
- This is true in particular in **first-order logic** and **simple type theory**.
- As a result, the use of partial functions and definite and indefinite description is problematic in traditional logics.
- There are many approaches to handling partial functions and undefinedness in traditional logics (see [3, 15, 17]).

Approach 1: Partial Functions as Relations

- An n -ary partial function f is represented by the $(n + 1)$ -ary relation that denotes the graph of f .
- Advantages:
 - ▶ Easy to implement.
 - ▶ Logic does not have to be changed.
- Disadvantages:
 - ▶ Statements become very verbose.
 - ▶ Partial functions are handled differently from total functions.
 - ▶ Does not handle definite and indefinite descriptions.

Approach 1: Examples

- Example 1:

$\text{top} : \text{Stack} \times \text{Elt} \rightarrow \text{Bool}.$

$\forall s : \text{Stack}, e : \text{Elt} .$

$\text{top}(s, e) \Leftrightarrow \exists s' : \text{Stack} . s = \text{push}(s', e).$

- Example 2:

$\text{div} : \mathbf{R} \times \mathbf{R} \times \mathbf{R} \rightarrow \text{Bool}.$

$\forall x, y, z : \mathbf{R} .$

$\text{div}(x, y, z) \Leftrightarrow y \neq 0 \wedge z = x * y^{-1}.$

Approach 2: Domain Predicates

- For each partial function f there is a predicate dom_f such that $\text{dom}_f(x)$ iff $x \in D_f$.
- In a formula, each application of f is guarded by a corresponding application of dom_f :
 - ▶ $\text{dom}_f(a) \Rightarrow A(f(a))$.
- Advantages:
 - ▶ Easy to implement.
 - ▶ Logic does not have to be changed.
 - ▶ Partial and total functions are handled in the same way.
- Disadvantages:
 - ▶ Statements become very verbose.
 - ▶ Does not handle definite and indefinite descriptions.

Approach 2: Examples

- **Example 1:**

$\text{top} : \text{Stack} \rightarrow \text{Elt}.$

$\text{dom}_{\text{top}} : \text{Stack} \rightarrow \text{Bool}.$

$\forall s : \text{Stack}, e : \text{Elt} . \text{top}(\text{push}(s, e)) = e.$

$\forall s : \text{Stack} .$

$\text{dom}_{\text{top}}(s) \Leftrightarrow \exists s' : \text{Stack}, e : \text{Elt} . s = \text{push}(s', e).$

- **Example 2:**

$/ : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}.$

$\text{dom}_{/} : \mathbf{R} \times \mathbf{R} \rightarrow \text{Bool}.$

$\forall x, y : \mathbf{R} . \text{dom}_{-1}(y) \Rightarrow x/y = x * y^{-1}.$

$\forall x, y : \mathbf{R} . \text{dom}_{/}(x, y) \Leftrightarrow \text{dom}_{-1}(y).$

Approach 3: Type Enforcement

- An application $f(a)$ of a function f to an argument a is well-formed only if $a \in D_f$.
- This is enforced with a type system: $f(a)$ is well-formed only if $f(a)$ is type correct.
- Partial functions are thus treated as total functions on a restricted type.
 - ▶ For example, the type of $/$ would be $\mathbf{R} \times (\mathbf{R} \setminus \{0\})$.
- Advantages:
 - ▶ Partial functions are effectively total functions.
 - ▶ Can be used with some traditional logics.
- Disadvantages:
 - ▶ Requires a sophisticated type system.
 - ▶ Type checking is undecidable.
 - ▶ Does not handle definite and indefinite descriptions.

Approach 3: Examples

- Example 1:

$\text{push} : \text{Stack} \times \text{Elt} \rightarrow \text{PushStack}$

$\text{top} : \text{PushStack} \rightarrow \text{Elt}.$

$\forall s : \text{Stack}, e : \text{Elt} . \text{top}(\text{push}(s, e)) = e.$

- Example 2:

$/ : \mathbf{R} \times \mathbf{R}^{-0} \rightarrow \mathbf{R}.$

$\forall x : \mathbf{R}, y : \mathbf{R}^{-0} . x/y = x * y^{-1}.$

Approach 4: Unspecified Values

- A term is considered undefined if its value is completely unspecified.
 - ▶ Thus an undefined term has some value, but nothing can be said about it.
- Advantages:
 - ▶ Easy to implement.
 - ▶ Logic does not have to be changed.
 - ▶ Handles both partial functions and definite and indefinite descriptions.
- Disadvantages:
 - ▶ Undefinedness can only be expressed implicitly.
 - ▶ Statements often require the use of definedness conditions.

Approach 4: Examples

- Example 1:

$\text{top} : \text{Stack} \rightarrow \text{Elt}.$

$\forall s : \text{Stack}, e : \text{Elt} . \text{top}(\text{push}(s, e)) = e.$

- Example 2:

$/ : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}.$

$\forall x, y : \mathbf{R} . x/y = x * y^{-1}.$

Approach 5: Internal Error Values

- The value of an undefined term of type α is some error value $e_\alpha \in D_\alpha$.
- Advantages:
 - ▶ Logic does not have to be changed.
 - ▶ Handles both partial functions and definite and indefinite descriptions.
- Disadvantages:
 - ▶ Often definedness conditions are needed to distinguish between when e_α means undefined and when e_α means the value of D_α .
 - ▶ Need a different error element for each type.

Approach 5: Examples

- Example 1:

$\text{top} : \text{Stack} \rightarrow \text{Elt}.$

$\forall s : \text{Stack}, e : \text{Elt} . \text{top}(\text{push}(s, e)) = e.$

$\text{top}(\text{empty_stack}) = -1.$

- Example 2:

$/ : \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}.$

$\forall x, y : \mathbf{R} . y \neq 0 \Rightarrow x/y = x * y^{-1}.$

$\forall x : \mathbf{R} . x/0 = 0.$

Approach 6: External Error Values

- For each type α , an error value \perp_α is added to α to produce a new type α_\perp .
 - ▶ $D_{\alpha_\perp} = D_\alpha \cup \{\perp_\alpha\}$, and α is thus a subtype of α_\perp .
- A term of type α_\perp is undefined if its value is \perp_α .
- Advantages:
 - ▶ Error values are separate from other values.
 - ▶ Handles both partial functions and definite and indefinite descriptions.
- Disadvantages:
 - ▶ Logic must be modified to include error values.
 - ▶ Quantification very often needs to be restricted to the nonerror values of a type.

Approach 6: Examples

- Example 1:

$$\text{top} : \text{Stack}_{\perp} \rightarrow \text{Elt}_{\perp}.$$
$$\forall s : \text{Stack}, e : \text{Elt} . \text{top}(\text{push}(s, e)) = e.$$
$$\text{top}(\text{empty_stack}) = \perp_{\text{Elt}}.$$
$$\text{top}(\perp_{\text{Stack}}) = \perp_{\text{Elt}}.$$

- Example 2:

$$/ : \mathbf{R}_{\perp} \times \mathbf{R}_{\perp} \rightarrow \mathbf{R}_{\perp}.$$
$$\forall x, y : \mathbf{R} . y \neq 0 \Rightarrow x/y = x * y^{-1}.$$
$$\forall x : \mathbf{R} . x/0 = \perp_{\mathbf{R}}.$$
$$\forall x, y : \mathbf{R}_{\perp} . (x = \perp_{\mathbf{R}} \vee y = \perp_{\mathbf{R}}) \Rightarrow x/y = \perp_{\mathbf{R}}.$$

Traditional Approach to Undefinedness

There is a [traditional approach to undefinedness](#) [6, 8] employed in mathematical practice that is based on three principles:

1. Atomic terms (i.e., [variables](#) and [constants](#)) are always defined.
2. Compound terms may be undefined.
 - ▶ A [function application](#) $f(a)$ is undefined if f is undefined, a is undefined, or $a \notin \text{dom}(f)$.
 - ▶ A [definite description](#) “the x that has property P ” is undefined if there is no x that has property P or there is more than one x that has property P .
 - ▶ An [indefinite description](#) “some x that has property P ” is undefined if there is no x that has property P .
3. [Formulas](#) are always true or false and hence are always defined.
 - ▶ A [predicate application](#) $p(a)$ is [false](#) if p is undefined, a is undefined, or $a \notin \text{dom}(p)$.

Benefits of the Traditional Approach

- Meaningful statements can include undefined terms.

$$\forall x : \mathbf{R} . \ 0 \leq x \Rightarrow (\sqrt{x})^2 = x.$$

$$0 \leq -2 \Rightarrow (\sqrt{-2})^2 = -2.$$

- Function domains can be implicit.

$$k(x) \simeq \frac{1}{x} + \frac{1}{x-1}.$$

$$\left(\frac{f}{g}\right)(x) \simeq \frac{f(x)}{g(x)}.$$

- Definedness assumptions can be implicit, and as a result, expressions involving undefinedness can be very concise.

$$\forall x, y, z : \mathbf{R} . \ \frac{x}{y} = z \Rightarrow x = y * z.$$

- Improper function applications and definite and indefinite descriptions are handled in the same way.

Formalizations of the Traditional Approach

- Several logicians, computer scientists, and software engineers have independently proposed logics that are essentially formalizations of the traditional approach to undefinedness [1, 2, 16, 18, 19].
- These logics have been obtained by slightly modifying traditional logics such as first-order logic and simple type theory.

Part 2

First-Order Logic with Undefinedness

Two Versions of First-Order Logic

- **FOL** is a version of traditional first-order logic.
 - ▶ All terms are defined.
 - ▶ All functions are total.
- **FOL with Undefinedness (FOLwU)** is a version of first-order logic that is obtained by slightly modifying FOL.
 - ▶ Formalizes the traditional approach to undefinedness.
 - ▶ New machinery is convenient, but not essential.
 - ▶ See [1, 13] for details.

Syntax of FOL: Languages

- Let \mathcal{V} be a fixed infinite set of symbols called **variables**.
- A **language** of FOL is a triple $L = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ where:
 - ▶ \mathcal{C} is a set of symbols called **individual constants**.
 - ▶ \mathcal{F} is a set of symbols called **function symbols**, each with an assigned arity ≥ 1 .
 - ▶ \mathcal{P} is a set of symbols called **predicate symbols**, each with an assigned arity ≥ 1 . \mathcal{P} contains the binary predicate symbol $=$.
 - ▶ \mathcal{V} , \mathcal{C} , \mathcal{F} , and \mathcal{P} are pairwise disjoint.

Syntax of FOL: Terms and Formulas

- Let $L = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ be a language of FOL.
- A **term** of L is a string of symbols inductively defined by the following formation rules:
 - ▶ Each $x \in \mathcal{V}$ and $a \in \mathcal{C}$ is a term of L .
 - ▶ If $f \in \mathcal{F}$ is n -ary and t_1, \dots, t_n are terms of L , then $f(t_1, \dots, t_n)$ is a term of L .
- A **formula** of L is a string of symbols inductively defined by the following formation rules:
 - ▶ If $p \in \mathcal{P}$ is n -ary and t_1, \dots, t_n are terms of L , then $p(t_1, \dots, t_n)$ is a formula of L .
 - ▶ If A and B are formulas of L and $x \in \mathcal{V}$, then $(\neg A)$ and $(A \Rightarrow B)$, and $(\forall x . A)$ are formulas of L .
- $=$, \neg , \Rightarrow , and \forall are the **logical constants** of FOL.

Syntax of FOL: Notational Definitions

$(s = t)$	denotes	$= (s, t)$.
$(s \neq t)$	denotes	$(\neg(s = t))$.
\top	denotes	$(\forall x . (x = x))$.
\perp	denotes	$(\neg(\top))$.
$(A \vee B)$	denotes	$((\neg A) \Rightarrow B)$.
$(A \wedge B)$	denotes	$(\neg((\neg A) \vee (\neg B)))$.
$(A \Leftrightarrow B)$	denotes	$((A \Rightarrow B) \wedge (B \Rightarrow A))$.
$(\exists x . A)$	denotes	$(\neg(\forall x . (\neg A)))$.

Semantics of FOL: Models

- A **model** for a language $L = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ of FOL is a pair $M = (D, I)$ where D is a nonempty domain (set) and I is a total function on $\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ such that:
 1. If $a \in \mathcal{C}$, $I(a) \in D$.
 2. If $f \in \mathcal{F}$ is n -ary, $I(f) : D^n \rightarrow D$ and $I(f)$ is total.
 3. If $p \in \mathcal{P}$ is n -ary, $I(p) : D^n \rightarrow \{\text{T}, \text{F}\}$ and $I(p)$ is total.
 4. $I(=)$ is id_D , the identity predicate on D .
- A **variable assignment** into M is a function that maps each $x \in \mathcal{V}$ to an element of D .
- Given a variable assignment φ into M , $x \in \mathcal{V}$, and $d \in D$, let $\varphi[x \mapsto d]$ be the variable assignment φ' into M such $\varphi'(x) = d$ and $\varphi'(y) = \varphi(y)$ for all $y \neq x$.

Semantics of FOL: Valuation Function (1/2)

The **valuation function** for a model M for a language $L = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ of FOL is the total binary function V^M that satisfies the following conditions for all variable assignments φ into M and all terms t and formulas A of L :

1. Let $t \in \mathcal{V}$. Then $V_\varphi^M(t) = \varphi(t)$.
2. Let $t \in \mathcal{C}$. Then $V_\varphi^M(t) = I(t)$.
3. Let $t = f(t_1, \dots, t_n)$. Then

$$V_\varphi^M(t) = I(f)(V_\varphi^M(t_1), \dots, V_\varphi^M(t_n)).$$

Semantics of FOL: Valuation Function (2/2)

4. Let $A = p(t_1, \dots, t_n)$. Then

$$V_\varphi^M(A) = I(p)(V_\varphi^M(t_1), \dots, V_\varphi^M(t_n)).$$

5. Let $A = (\neg A')$. If $V_\varphi^M(A') = \text{F}$, then $V_\varphi^M(A) = \text{T}$; otherwise $V_\varphi^M(A) = \text{F}$.

6. Let $A = (A_1 \Rightarrow A_2)$. If $V_\varphi^M(A_1) = \text{T}$ and $V_\varphi^M(A_2) = \text{F}$, then $V_\varphi^M(A) = \text{F}$; otherwise $V_\varphi^M(A) = \text{T}$.

7. Let $A = (\forall x . A')$. If $V_{\varphi[x \mapsto d]}^M(A') = \text{T}$ for all $d \in D$, then $V_\varphi^M(A) = \text{T}$; otherwise $V_\varphi^M(A) = \text{F}$.

Proof System of FOL: Axiom Schemas

1. $A \Rightarrow (B \Rightarrow A)$.
2. $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$.
3. $(\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)$.
4. $(\forall x . A \Rightarrow B) \Rightarrow (A \Rightarrow \forall x . B)$ where x is not free in A .
5. $(\forall x . A) \Rightarrow A[x \mapsto t]$ where t is free for x in A .
6. $\forall x . x = x$.
7. $s = t \Rightarrow (A \Rightarrow A^*)$ where A^* is the result of replacing one occurrence of s in A with t , provided that the occurrence of s is not a variable immediately after \forall .

Proof System of FOL: Rules of Inference

1. From A and $A \Rightarrow B$ infer B .
2. From A infer $\forall x . A$.

Syntax of FOLwU: Languages

- Let \mathcal{V} be a fixed infinite set of symbols called **variables**.
- A **language** of FOLwU is a triple $L = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ where:
 - ▶ \mathcal{C} is a set of symbols called **individual constants**.
 - ▶ \mathcal{F} is a set of symbols called **function symbols**, each with an assigned arity ≥ 1 .
 - ▶ \mathcal{P} is a set of symbols called **predicate symbols**, each with an assigned arity ≥ 1 . \mathcal{P} contains the binary predicate symbol $=$.
 - ▶ \mathcal{V} , \mathcal{C} , \mathcal{F} , and \mathcal{P} are pairwise disjoint.

Syntax of FOLwU: Terms and Formulas

- Let $L = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ be a language of FOLwU.
- A **term** of L is a string of symbols inductively defined by the following formation rules:
 - ▶ Each $x \in \mathcal{V}$ and $a \in \mathcal{C}$ is a term of L .
 - ▶ If $f \in \mathcal{F}$ is n -ary and t_1, \dots, t_n are terms of L , then $f(t_1, \dots, t_n)$ is a term of L .
 - ▶ If $x \in \mathcal{V}$ and A is a formula of L , then $(Ix . A)$ is a term of L .
- A **formula** of L is a string of symbols inductively defined by the following formation rules:
 - ▶ If $p \in \mathcal{P}$ is n -ary and t_1, \dots, t_n are terms of L , then $p(t_1, \dots, t_n)$ is a formula of L .
 - ▶ If A and B are formulas of L and $x \in \mathcal{V}$, then $(\neg A)$ and $(A \Rightarrow B)$, and $(\forall x . A)$ are formulas of L .
- $=, \neg, \Rightarrow, \forall, I$ are the **logical constants** of FOLwU.

Syntax of FOLwU: Notational Definitions

$(s = t)$	denotes	$= (s, t)$.
$(s \neq t)$	denotes	$(\neg(s = t))$.
\top	denotes	$(\forall x . (x = x))$.
\perp	denotes	$(\neg(\top))$.
$(A \vee B)$	denotes	$((\neg A) \Rightarrow B)$.
$(A \wedge B)$	denotes	$(\neg((\neg A) \vee (\neg B)))$.
$(A \Leftrightarrow B)$	denotes	$((A \Rightarrow B) \wedge (B \Rightarrow A))$.
$(\exists x . A)$	denotes	$(\neg(\forall x . (\neg A)))$.
$(t \downarrow)$	denotes	$\exists x . x = t$ where x does not occur in t
$(t \uparrow)$	denotes	$\neg(t \downarrow)$.
$(s \simeq t)$	denotes	$(s \downarrow \vee t \downarrow) \Rightarrow s = t$
\perp	denotes	$\exists x . x \neq x$
$\text{if}(A, s, t)$	denotes	$\exists x . (A \Rightarrow x = s) \vee (\neg A \Rightarrow x = t)$ where x does not occur in A , s , or t

Semantics of FOLwU: Models

- A **model** for a language $L = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ of FOLwU is a pair $M = (D, I)$ where D is a nonempty domain (set) and I is a total function on $\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ such that:
 1. If $a \in \mathcal{C}$, $I(a) \in D$.
 2. If $f \in \mathcal{F}$ is n -ary, $I(f) : D^n \rightarrow D$ and $I(f)$ is **partial**.
 3. If $p \in \mathcal{P}$ is n -ary, $I(p) : D^n \rightarrow \{\text{T}, \text{F}\}$ and $I(p)$ is **total**.
 4. $I(=)$ is id_D , the identity predicate on D .
- A **variable assignment** into M is a function that maps each $x \in \mathcal{V}$ to an element of D .
- Given a variable assignment φ into M , $x \in \mathcal{V}$, and $d \in D$, let $\varphi[x \mapsto d]$ be the variable assignment φ' into M such $\varphi'(x) = d$ and $\varphi'(y) = \varphi(y)$ for all $y \neq x$.

Semantics of FOLwU: Valuation Function (1/2)

The **valuation function** for a model M for a language $L = (\mathcal{C}, \mathcal{F}, \mathcal{P})$ of FOLwU is the **partial** binary function V^M that satisfies the following conditions for all variable assignments φ into M and all terms t and formulas A of L :

1. Let $t \in \mathcal{V}$. Then $V_\varphi^M(t) = \varphi(t)$.
2. Let $t \in \mathcal{C}$. Then $V_\varphi^M(t) = I(t)$.
3. Let $t = f(t_1, \dots, t_n)$. If $V_\varphi^M(t_1), \dots, V_\varphi^M(t_n)$ are defined and $I(f)$ is defined at $(V_\varphi^M(t_1), \dots, V_\varphi^M(t_n))$, then

$$V_\varphi^M(t) = I(f)(V_\varphi^M(t_1), \dots, V_\varphi^M(t_n)).$$

Otherwise $V_\varphi^M(t)$ is undefined.

4. Let $t = (\text{I } x . A)$. If $V_{\varphi[x \mapsto d]}^M(A) = \text{T}$ for a unique $d \in D$, then $V_\varphi^M(t) = d$. Otherwise $V_\varphi^M(t)$ is undefined.

Semantics of FOLwU: Valuation Function (2/2)

5. Let $A = p(t_1, \dots, t_n)$. If $V_\varphi^M(t_1), \dots, V_\varphi^M(t_n)$ are defined, then

$$V_\varphi^M(A) = I(p)(V_\varphi^M(t_1), \dots, V_\varphi^M(t_n)).$$

Otherwise, $V_\varphi^M(A) = \text{F}$.

6. Let $A = (\neg A')$. If $V_\varphi^M(A') = \text{F}$, then $V_\varphi^M(A) = \text{T}$; otherwise $V_\varphi^M(A) = \text{F}$.

7. Let $A = (A_1 \Rightarrow A_2)$. If $V_\varphi^M(A_1) = \text{T}$ and $V_\varphi^M(A_2) = \text{F}$, then $V_\varphi^M(A) = \text{F}$; otherwise $V_\varphi^M(A) = \text{T}$.

8. Let $A = (\forall x . A')$. If $V_{\varphi[x \mapsto d]}^M(A') = \text{T}$ for all $d \in D$, then $V_\varphi^M(A) = \text{T}$; otherwise $V_\varphi^M(A) = \text{F}$.

Proof System of FOLwU: Axiom Schemas

1. $A \Rightarrow (B \Rightarrow A)$.
2. $(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$.
3. $(\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)$.
4. $(\forall x . A \Rightarrow B) \Rightarrow (A \Rightarrow \forall x . B)$ where x is not free in A .
5. $((\forall x . A) \wedge \textcolor{red}{t} \downarrow) \Rightarrow A[x \mapsto t]$ where t is free for x in A .
6. $\forall x . x = x$.
7. $\textcolor{red}{s \simeq t} \Rightarrow (A \Rightarrow A^*)$ where A^* is the result of replacing one occurrence of s in A with t , provided that the occurrence of s is not a variable immediately after \forall or I .

Proof System of FOLwU: Axiom Schemas

8. $x \downarrow$ where $x \in \mathcal{V}$.
9. $c \downarrow$ where $c \in \mathcal{C}$.
10. $(t_1 \uparrow \vee \cdots \vee t_n \uparrow) \Rightarrow f(t_1, \dots, t_n) \uparrow$ where $f \in \mathcal{F}$ is n -ary.
11. $(t_1 \uparrow \vee \cdots \vee t_n \uparrow) \Rightarrow \neg p(t_1, \dots, t_n)$ where $p \in \mathcal{P}$ is n -ary.
12. $(\exists ! x . A) \Rightarrow ((\text{Ix} . A) \downarrow \wedge A[x \mapsto (\text{Ix} . A)])$ where $(\text{Ix} . A)$ is free for x in A .
13. $\neg(\exists ! x . A) \Rightarrow (\text{Ix} . A) \uparrow$.

Proof System of FOLwU: Rules of Inference

1. From A and $A \Rightarrow B$ infer B .
2. From A infer $\forall x . A$.

FOLwU: Five Examples

1. $\forall s . \text{top}(s) \simeq \text{I } e . \exists s' . s = \text{push}(s', e).$

2. $\forall x, y . x/y \simeq x * y^{-1}.$

$$\forall x, y . x/y \simeq \text{I } z . x = y * z.$$

3. $f(2, 3) \downarrow$ where

$$\forall x, y . f(x, y) \simeq \sqrt{\sqrt{x + y} - \sqrt{x - y}}.$$

4. $\forall x, y . \tan(x + y) \downarrow \wedge \frac{\tan(x) + \tan(y)}{1 + \tan(x) * \tan(y)} \downarrow \Rightarrow$

$$\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 + \tan(x) * \tan(y)}.$$

5. $\forall x . \lim_{x \rightarrow a^-} f(x) = \lim_{x \rightarrow a^+} f(x) \Rightarrow (\lim_{x \rightarrow a} f(x)) \downarrow.$

The Elimination Theorem

The machinery in FOLwU for partial functions and undefined terms is purely a convenience — it can freely eliminated.

Elimination Theorem. For every theory T of FOLwU, there is a theory T^* of FOL and a translation from each formula A of T to a formula A^* of T^* such that:

$$T \models A \text{ iff } T^* \models A^*.$$

Proof. First, eliminate each n -ary function symbol f by replacing it with a $(n + 1)$ -ary predicate symbol p_f that denotes its graph. For example, $p(s, f(t))$ is replaced with $\exists y . p_f(t, y) \wedge p(s, y)$. Second, eliminate each occurrence of $\text{Ix} . A$ by replacing it with a unique existentially quantified variable. For example, $p(s, (\text{Ix} . A))$ is replaced with $\exists ! x . A \wedge p(s, x)$.

Notes about FOLwU

- Formalizes the traditional approach to undefinedness.
 - ▶ Functions are strict with respect to undefinedness.
 - ▶ Predicates are strict with respect to undefinedness.
- The definedness and undefinedness of a term can be directly stated: $t \downarrow$, $t \uparrow$.
- Undefined is like a universal external error value.
 - ▶ All undefined terms have the same “value”.
- Undefined is not a genuine value.
 - ▶ Undefined cannot be an input to a function or a predicate.
 - ▶ The range of a variable does not include undefined.
- Undefined terms are indiscernible.

Disadvantages of FOLwU

- FOLwU is not a traditional logic.
- FOLwU is moderately harder to implement than FOL.

Advantages of FOLwU

- Formalizes the traditional approach to undefinedness:
 - ▶ Expressions that include undefined terms can be meaningful.
 - ▶ Function domains can be implicit.
 - ▶ Definedness assumptions can be implicit.
 - ▶ Improper function applications and definite and indefinite descriptions are handled in the same way.
- Definedness checking may be performed only as needed.
- Closer to standard mathematical practice than FOL.
- Has same **theoretical expressivity** as FOL, but much greater **practical expressivity**.

Part 3

Other Logics with Undefinedness

Simple Type Theory

- The traditional approach to undefinedness can be formalized in simple type theory in much the same way as in first-order logic [3].
- In [11] we present a modification of Peter Andrews' formulation of Church's type theory that directly formalizes the traditional approach of undefinedness.
- A version of Church's type theory with undefinedness named LUTINS [4, 5] is the logic of the IMPS theorem proving system [14].
- STTwU [8] is a version of STT [12], a simple version of simple type theory, with undefinedness.

IMPS

- IMPS is a **higher-order theorem proving system** developed at The MITRE Corporation by W. Farmer, J. Guttman, and J. Thayer.
- Distinguishing characteristics:
 1. Logic is simple type theory with undefinedness and subtypes.
 2. Little theories method for organizing mathematics.
 3. Proofs that combine deduction and computation.
- The IMPS theory library contains significant portions of **analysis** as well as algebra and logic.
- Available without fee by public license (first released in 1993).
 - ▶ Written in T and Common Lisp.
 - ▶ User interface based on XEmacs.
 - ▶ Minimally maintained.
- IMPS web page is at
<http://imps.mcmaster.ca/>.

Syntax of STTwU: Types

- A **type** of STTwU is a string of symbols defined by the following formation rules:

$$\mathbf{T1} \quad \frac{}{\mathbf{type}[\iota]} \quad (\text{Type of individuals})$$

$$\mathbf{T2} \quad \frac{}{\mathbf{type}[*]} \quad (\text{Type of truth values})$$

$$\mathbf{T3} \quad \frac{\mathbf{type}[\alpha], \mathbf{type}[\beta]}{\mathbf{type}[(\alpha \rightarrow \beta)]} \quad (\text{Function type})$$

- Let \mathcal{T} denote the set of types of STTwU.

Syntax of STTwU: Symbols

- The logical symbols of STTwU are:
 - ▶ Function application: \circ (hidden).
 - ▶ Function abstraction: λ .
 - ▶ Equality: $=$.
 - ▶ Definite description: I (capital iota).
 - ▶ An infinite set \mathcal{V} of symbols called **variables**.
- A **language** of STTwU is a pair $L = (\mathcal{C}, \tau)$ where:
 - ▶ \mathcal{C} is a set of symbols called **constants**.
 - ▶ \mathcal{V} and \mathcal{C} are disjoint.
 - ▶ $\tau : \mathcal{C} \rightarrow \mathcal{T}$ is a total function.

Syntax of STTwU: Expressions

An **expression** E of **type** α of a STTwU language $L = (\mathcal{C}, \tau)$ is defined by the following rules:

$$\mathbf{E1} \quad \frac{x \in \mathcal{V}, \ \mathbf{type}[\alpha]}{\mathbf{expr}_L[(x : \alpha), \alpha]} \quad (\text{Variable})$$

$$\mathbf{E2} \quad \frac{c \in \mathcal{C}}{\mathbf{expr}_L[c, \tau(c)]} \quad (\text{Constant})$$

$$\mathbf{E3} \quad \frac{\mathbf{expr}_L[A, \alpha], \ \mathbf{expr}_L[F, (\alpha \rightarrow \beta)]}{\mathbf{expr}_L[F(A), \beta]} \quad (\text{Application})$$

$$\mathbf{E4} \quad \frac{x \in \mathcal{V}, \ \mathbf{type}[\alpha], \ \mathbf{expr}_L[B, \beta]}{\mathbf{expr}_L[(\lambda x : \alpha . B), (\alpha \rightarrow \beta)]} \quad (\text{Abstraction})$$

$$\mathbf{E5} \quad \frac{\mathbf{expr}_L[E_1, \alpha], \ \mathbf{expr}_L[E_2, \alpha]}{\mathbf{expr}_L[(E_1 = E_2), *]} \quad (\text{Equality})$$

$$\mathbf{E6} \quad \frac{x \in \mathcal{V}, \ \mathbf{type}[\alpha], \ \alpha \neq *, \ \mathbf{expr}_L[A, *]}{\mathbf{expr}_L[(\text{I} x : \alpha . A), \alpha]} \quad (\text{Definite description})$$

Notational Definitions

\top	denotes	$(\lambda x : * . x) = (\lambda x : * . x)$
F	denotes	$(\lambda x : * . \top) = (\lambda x : * . x)$
$(\neg A_*)$	denotes	$A_* = \mathsf{F}$
$(A_* \wedge B_*)$	denotes	$(\lambda f : * \rightarrow (* \rightarrow *) . f(\top)(\top)) =$ $(\lambda f : * \rightarrow (* \rightarrow *) . f(A_*)(B_*))$
$(A_* \vee B_*)$	denotes	$\neg(\neg A_* \wedge \neg B_*)$
$(A_* \Rightarrow B_*)$	denotes	$\neg A_* \vee B_*$
$(\forall x : \alpha . A_*)$	denotes	$(\lambda x : \alpha . A_*) = (\lambda x : \alpha . \top)$
$(\exists x : \alpha . A_*)$	denotes	$\neg(\forall x : \alpha . \neg A_*)$
$(A_\alpha \downarrow)$	denotes	$\exists x : \alpha . x = A_\alpha$
$(A_\alpha \uparrow)$	denotes	$\neg(A_\alpha \downarrow)$
$(A_\alpha \simeq B_\alpha)$	denotes	$(A_\alpha \downarrow \vee B_\alpha \downarrow) \Rightarrow A_\alpha = B_\alpha$
\perp_α	denotes	$\mathbf{I} x : \alpha . x \neq x$
$\mathbf{if}(A_*, B_\alpha, C_\alpha)$	denotes	$\mathbf{I} x : \alpha . (A_* \Rightarrow x = B_\alpha) \wedge$ $(\neg A_* \Rightarrow x = C_\alpha)$

Semantics of STTwU: Standard Models

- A **standard model** for a language $L = (\mathcal{C}, \tau)$ of STT is a triple $M = (\mathcal{D}, I)$ where:
 - ▶ $\mathcal{D} = \{D_\alpha : \alpha \in \mathcal{T}\}$ is a set of nonempty domains (sets).
 - ▶ $D_* = \{T, F\}$, the domain of truth values.
 - ▶ $D_{\alpha \rightarrow \beta}$ is the set of all **partial** functions from D_α to D_β .
 - ▶ I maps each $c \in \mathcal{C}$ to an element of $D_{\tau(c)}$.
- A **variable assignment** into M is a function that maps each expression $(x : \alpha)$ to an element of D_α .
- Given a variable assignment φ into M , an expression $(x : \alpha)$, and $d \in D_\alpha$, let $\varphi[(x : \alpha) \mapsto d]$ be the variable assignment φ' into M such that $\varphi'((x : \alpha)) = d$ and $\varphi'(v) = \varphi(v)$ for all $v \neq (x : \alpha)$.

Semantics of STTwU: Valuation Function (1/2)

The **valuation function** for a standard model $M = (\mathcal{D}, I)$ for a language $L = (\mathcal{C}, \tau)$ of STTwU is the **partial** binary function V^M that satisfies the following conditions for all variable assignments φ into M and all expressions E of L :

1. Let E is $(x : \alpha)$. Then $V_\varphi^M(E) = \varphi(E)$.
2. Let $E \in \mathcal{C}$. Then $V_\varphi^M(E) = I(E)$.
3. Let E_β be $F(A)$. If $V_\varphi^M(F)$ is defined, $V_\varphi^M(A)$ is defined, and $V_\varphi^M(A)$ is in the domain of $V_\varphi^M(F)$, then

$$V_\varphi^M(E_\alpha) = V_\varphi^M(F)(V_\varphi^M(A)).$$

Otherwise, $V_\varphi^M(E_\beta) = \text{F}$ if $\beta = *$ and $V_\varphi^M(E_\beta)$ is undefined if $\beta \neq *$.

Semantics of STTwU: Valuation Function (2/2)

4. Let $E_{\alpha \rightarrow \beta}$ be $(\lambda x : \alpha . B)$. Then $V_{\varphi}^M(E_{\alpha \rightarrow \beta})$ is the **partial** function $f : D_{\alpha} \rightarrow D_{\beta}$ such that, for each $d \in D_{\alpha}$,
 $f(d) = V_{\varphi[(x:\alpha) \mapsto d]}^M(B)$ if $V_{\varphi[(x:\alpha) \mapsto d]}^M(B)$ is defined and $f(d)$ is **undefined** if $V_{\varphi[(x:\alpha) \mapsto d]}^M(B)$ is **undefined**.
5. Let E_* be $(E_1 = E_2)$. If $V_{\varphi}^M(E_1)$ is defined, $V_{\varphi}^M(E_2)$ is defined, and $V_{\varphi}^M(E_1) = V_{\varphi}^M(E_2)$, then $V_{\varphi}^M(E_*) = \text{T}$. **Otherwise** $V_{\varphi}^M(E_*) = \text{F}$.
6. Let E_{α} be $(\text{I} x : \alpha . A)$. If there is a unique $d \in D_{\alpha}$ such that $V_{\varphi[(x:\alpha) \mapsto d]}^M(A) = \text{T}$, then $V_{\varphi}^M(E_{\alpha}) = d$. **Otherwise**, $V_{\varphi}^M(E_{\alpha}) = \text{F}$.

STTwU Proof System: Axiom Schemas (1/4)

A1 (Truth Values)

$$\forall f : (* \rightarrow *) . (f(\top) \wedge f(\mathbb{F})) \Leftrightarrow (\forall x : * . f(x)).$$

A2 (Leibniz' Law)

$$\forall x, y : \alpha . (x = y) \Rightarrow (\forall p : (\alpha \rightarrow *) . p(x) \Leftrightarrow p(y)).$$

A3 (Extensionality)

$$\forall f, g : (\alpha \rightarrow \beta) . (f = g) \Leftrightarrow (\forall x : \alpha . f(x) \simeq g(x)).$$

A4 (Beta-Reduction)

$$A_\alpha \downarrow \Rightarrow (\lambda x : \alpha . B_\beta)(A_\alpha) \simeq B_\beta[(x : \alpha) \mapsto A_\alpha]$$

provided A_α is free for $(x : \alpha)$ in B_β .

STTwU Proof System: Axiom Schemas (2/4)

A5 (Variables are Defined)

$(x : \alpha) \downarrow$ where $x \in \mathcal{V}$ and $\alpha \in \mathcal{T}$.

A6 (Constants are Defined)

$c \downarrow$ where $c \in \mathcal{C}$.

A7 (Function Abstractions are Defined)

$(\lambda x : \alpha . B_\beta) \downarrow$

A8 (Predicate Applications are Defined)

$F_{\alpha \rightarrow *} (A_\alpha) \downarrow.$

STTwU Proof System: Axiom Schemas (3/4)

A9 (Improper Predicate Application)

$$(F_{\alpha \rightarrow *} \uparrow \vee A_\alpha \uparrow) \Rightarrow \neg F_{\alpha \rightarrow *} (A_\alpha).$$

A10 (Improper Function Application)

$$(F_{\alpha \rightarrow \beta} \uparrow \vee A_\alpha \uparrow) \Rightarrow F_{\alpha \rightarrow \beta} (A_\alpha) \uparrow \text{ where } \beta \neq *.$$

A11 (Improper Equality)

$$(A_\alpha \uparrow \vee B_\alpha \uparrow) \Rightarrow \neg (A_\alpha = B_\alpha).$$

A12 (Equality and Quasi-Quality)

$$A_\alpha \downarrow \Rightarrow (B_\alpha \downarrow \Rightarrow (A_\alpha \simeq B_\alpha) \simeq (A_\alpha = B_\alpha)).$$

STTwU Proof System: Axiom Schemas (4/4)

A13 (Proper Definite Description)

$$(\exists ! x : \alpha . A_*) \Rightarrow$$

$$((\text{I} x : \alpha . A_*) \downarrow \wedge A_*[(x : \alpha) \mapsto (\text{I} x : \alpha . A_*)])$$

where $\alpha \neq *$ and provided $(\text{I} x : \alpha . A_*)$ is free for $(x : \alpha)$ in A_* .

A14 (Improper Definite Description)

$$\neg(\exists ! x : \alpha . A_*) \Rightarrow (\text{I} x : \alpha . A_*) \uparrow \text{ where } \alpha \neq *.$$

STTwU Proof System: Rules of Inference

R1 (Modus Ponens) From A_* and $A_* \Rightarrow B_*$ infer B_* .

R2 (Quasi-Equality Substitution) From $A_\alpha \simeq B_\alpha$ and C_* infer the result of replacing one occurrence of A_α in C_* by an occurrence of B_α , provided that the occurrence of A_α in C_* is not immediately preceded by λ .

Simple Type Theory with Subtypes

- The type system of a logic like STTwU can be extended to admit **subtypes**.
 - ▶ $\alpha \ll \beta$ means $D_\alpha \subseteq D_\beta$.
 - ▶ Types are **covariant** with respect \rightarrow :
If $\alpha \ll \alpha'$ and $\beta \ll \beta'$, then $(\alpha \rightarrow \beta) \ll (\alpha' \rightarrow \beta')$.
 - ▶ Examples: $\mathbf{N} \ll \mathbf{Z} \ll \mathbf{Q} \ll \mathbf{R}$ and $(\mathbf{N} \rightarrow \mathbf{Z}) \ll (\mathbf{R} \rightarrow \mathbf{Q})$.
- The IMPS logic LUTINS is an example of a simple type theory with undefinedness and subtypes.
 - ▶ Subtypes are called **sorts** in IMPS.
- Every expression is assigned one nominal type but can “reside” in many types.
 - ▶ $(A_\alpha \downarrow \beta)$ denotes $\exists x : \beta . x = A_\alpha$.
 - ▶ $(A_\alpha \downarrow)$ denotes $(A_\alpha \downarrow \alpha)$.
- Subtypes are quite convenient for expressing mathematics.

NBG Set Theory

- STMM [7, 13] is a version of **NBG set theory** intended to be a Set Theory for Mechanized Mathematics.
- NBG set theory admits proper classes as well as sets.
 - ▶ The universe of sets is a proper class.
 - ▶ Total functions like the cardinality function is a proper class.
- STMM is a logic with undefinedness.
- STMM has a type system with a universal type, function types, and subtypes.
- Definedness checking includes checking for whether a term denotes a set (as opposed to a proper class).

Chiron

- Chiron [9, 10] is a logic based on **NBG set theory** that is intended to be a practical, general-purpose logic for mechanizing mathematics.
- It is a **logic with undefinedness**.
- It has a **type system** with a universal type, dependent types, dependent function types, subtypes, and possibly empty types.
- It has a **facility for reasoning about the syntax of expressions** that employs **quotation** and **evaluation**.
- Ungrounded terms are treated as being **undefined**, and ungrounded formulas (like the **liar paradox**) are treated as being **false**.

Part 4

Implementing a Logic with Undefinedness

Overview

- Implementing a logic with undefinedness is very similar to implementing the corresponding traditional logic.
- There are three key laws that must be implemented differently:
 1. Substitution for a variable.
 2. Equality substitution.
 3. Definition of a constant.
- All three require definedness checking.
- These laws and definedness checking are implemented in the IMPS system.

Substitution for a Variable

- In FOL the **law of universal instantiation** is:

$$(\forall x . A) \Rightarrow A[x \mapsto t] \quad \text{where } t \text{ is free for } x \text{ in } A.$$

- In FOLwU is is:

$$((\forall x . A) \wedge t \downarrow) \Rightarrow A[x \mapsto t] \quad \text{where } t \text{ is free for } x \text{ in } A.$$

- Thus, in a logic with undefinedness, a substitution is a mapping of variables to defined terms.
- The substitutions found by naive **matching** may not be legitimate — **the definedness of the target terms must be checked!**
- Candidate substitutions can be used before they are checked!
 - ▶ See the IMPS method of finding applicable **macetes**.

Equality Substitution

- In FOL the **law of equality substitution** is:

$s = t \Rightarrow (A \Rightarrow A^*)$ where A^* is the result of replacing one occurrence of s in A with t , provided that the occurrence of s is not a variable immediately after \forall .

- In FOLwU it is:

$s \simeq t \Rightarrow (A \Rightarrow A^*)$ where A^* is the result of replacing one occurrence of s in A with t , provided that the occurrence of s is not a variable immediately after \forall .

- Thus, in a logic with undefinedness, term rewriting is based on **quasi-equality** instead of **equality**.

Definition of a Constant

- A **definition of a constant** c is an axiom of the form $c = t$.
- In a traditional logic, the following **syntactic conditions** must be verified before the definition can be added to a theory T :
 - ▶ c is new, i.e., it is not in the language of T .
 - ▶ t does not contain c .
- In a logic with definedness, a **definedness condition** must also be verified:
 - ▶ $t \downarrow$ is valid in T .
- Let T be a FOLwU theory of the real numbers.
 - ▶ $2 = (\exists x . x = 1 + 1)$ is a legitimate definition in T .
 - ▶ $\text{inv-zero} = 0^{-1}$ is not a legitimate definition in T .

Definedness Checking

- Effective definedness checking is crucial for an implementation of a logic with undefinedness.
 - ▶ Reasoning leads to a proliferation of definedness conditions, most of which need to be checked.
 - ▶ Definedness checking is an undecidable problem.
- The IMPS simplifier can automatically check almost all definedness conditions that typically arise in IMPS proofs.
 - ▶ When the IMPS simplifier fails, a nontrivial argument is usually needed to verify the definedness condition.

Definedness Checking in IMPS

- The IMPS simplifier checks definedness in a type, i.e, formulas of the form $t \downarrow \alpha$.
- The simplifier employs theorems concerning the domain and range of functions and the relationship between types such as:
 - ▶ “ f is total”.
 - ▶ $C \Rightarrow \alpha \ll \beta$.
 - ▶ $\forall x_1 : \alpha_1, \dots, x_n : \alpha_n . C(x_1, \dots, x_n) \Rightarrow (f(x_1, \dots, x_n) \downarrow \alpha)$.
 - ▶ $\forall x_1 : \alpha_1, \dots, x_n : \alpha_n . C(x_1, \dots, x_n, f(x_1, \dots, x_n))$
- The simplifier also uses the **method of local contexts** and cached results.
- Example:
$$\forall x, y : \mathbf{Z}, z : \mathbf{Q} . 2 < z \Rightarrow ((x * y - 3! / |z|) \downarrow \mathbf{Q}).$$
- **Definedness checking in IMPS is very effective in practice!**

Conclusion

- A practical logic needs to handle undefinedness effectively.
- The traditional approach to undefinedness, which is entrenched in mathematical practice, is very effective.
- This approach can be formalized in a traditional logic by slightly modifying the logic.
 - ▶ The syntax needs little, if any, modification.
 - ▶ The semantics is changed to admit partial functions and undefined terms.
 - ▶ The proof system needs new laws about definedness and modified laws involving variable and equality substitution.
- A logic of this kind can be effectively implemented.
 - ▶ Good definedness checking is crucial.

References I

[1] M. Beeson.

Formalizing constructive mathematics: Why and how?

In F. Richman, editor, *Constructive Mathematics: Proceedings, New Mexico, 1980*, volume 873 of *Lecture Notes in Mathematics*, pages 146–190. Springer-Verlag, 1981.

[2] T. Burge.

Truth and Some Referential Devices.

PhD thesis, Princeton University, 1971.

[3] W. M. Farmer.

A partial functions version of Church's simple theory of types.

Journal of Symbolic Logic, 55:1269–91, 1990.

References II

[4] W. M. Farmer.

A simple type theory with partial functions and subtypes.

Annals of Pure and Applied Logic, 64:211–240, 1993.

[5] W. M. Farmer.

Theory interpretation in simple type theory.

In J. Heering et al., editor, *Higher-Order Algebra, Logic, and Term Rewriting*, volume 816 of *Lecture Notes in Computer Science*, pages 96–123. Springer-Verlag, 1994.

[6] W. M. Farmer.

Reasoning about partial functions with the aid of a computer.

Erkenntnis, 43:279–294, 1995.

References III

- [7] W. M. Farmer.
STMM: A Set Theory for Mechanized Mathematics.
Journal of Automated Reasoning, 26:269–289, 2001.
- [8] W. M. Farmer.
Formalizing undefinedness arising in calculus.
In D. Basin and M. Rusinowitch, editors, *Automated Reasoning—IJCAR 2004*, volume 3097 of *Lecture Notes in Computer Science*, pages 475–489. Springer-Verlag, 2004.

References IV

[9] W. M. Farmer.

Chiron: A multi-paradigm logic.

In R. Matuszewski and A. Zalewska, editors, *From Insight to Proof: Festschrift in Honour of Andrzej Trybulec*, volume 10(23) of *Studies in Logic, Grammar and Rhetoric*, pages 1–19. University of Białystok, 2007.

[10] W. M. Farmer.

Chiron: A set theory with types, undefinedness, quotation, and evaluation.

SQRL Report No. 38, McMaster University, 2007.

Revised 2009.

References V

[11] W. M. Farmer.

Andrews' type system with undefinedness.

In C. Benzmüller, C. Brown, J. Siekmann, and R. Statman, editors, *Reasoning in Simple Type Theory: Festschrift in Honor of Peter B. Andrews on his 70th Birthday*, Studies in Logic, pages 223–242. College Publications, 2008.

[12] W. M. Farmer.

The seven virtues of simple type theory.

Journal of Applied Logic, 6:267–286, 2008.

DOI:10.1016/j.jal.2007.11.001.

References VI

- [13] W. M. Farmer and J. D. Guttman.
A set theory with support for partial functions.
Studia Logica, 66:59–78, 2000.
- [14] W. M. Farmer, J. D. Guttman, and F. J. Thayer.
IMPS: An Interactive Mathematical Proof System.
Journal of Automated Reasoning, 11:213–248, 1993.
- [15] C. B. Jones.
References relating to reasoning about partial functions, 2007.
Available at <http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/lpf-refns.pdf>.

References VII

- [16] L. G. Monk.
PDLM: A Proof Development Language for Mathematics.
Technical Report M86-37, The MITRE Corporation, Bedford,
Massachusetts, 1986.
- [17] O. Müller and K. Slind.
Treating partiality in a logic of total functions.
The Computer Journal, 40:640–652, 1997.
- [18] D. L. Parnas.
Predicate logic for software engineering.
IEEE Transactions on Software Engineering, 19:856–861, 1993.

References VIII

[19] R. Schock.

Logics without Existence Assumptions.

Almqvist & Wiksells, Stockholm, Sweden, 1968.

