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Part 1

The Nature of Undefinedness
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What is Undefinedness?

@ A mathematical term is undefined if it has no prescribed
meaning or if it denotes a value that does not exist.

@ Undefined terms are commonplace in mathematics and computer
sclence.

@ Sources of undefinedness:
1. Improper function applications:
Y. V=4, tan(%), limy_gsin(1), top(empty_stack)
2. Improper definite descriptions:

“the x such that x2 = 4"

3. Improper indefinite descriptions:

“some x such x2 = —4"
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Partial Functions

@ A partial function f has:

1. A domain of definition Df consisting of the values at which it is
defined.

2. A domain of application D7 consisting of the values to which it
may be applied.

@ An application f(a) is undefined if a & Ds.
o f is total if Df = D7 and strictly partial if D¢ C D7.
@ There are two views of partial functions:

1. A total function is a true function, while a strictly partial
function is a broken function.

2. A partial function is a general kind of a function, while a total
function is a special kind of function.

@ The first view is dominate in computer science, but the second
view 1s dominate in mathematics.
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Five Examples

1. The definition of the function that returns the top of a stack.
2. The definition of the division function / : R x R — R defined by

x|y =x*y t
3. The formula “f(2,3) is defined” where f : R Xx R — R defined by

f(x,y) = \/\/X+y—\/x—y.

4. The trigonometric identity

tan(x) + tan(y)

tan(x +y) = 1 + tan(x) * tan(y)’

5. The following theorem about limits: For all f : R — R, a € R,

X_I|£na_ f(x) = X_Il;naJr f(x) implies Xlln>1a f(x) exists.
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Definite Description

@ A definite description is a term of the form
“the x such that A holds".

@ In logic, a definite description is often written as ¢ x . A.

» Example: max(s) =tm . mesA(Vx.xes=x<m).
@ The use of definite description is quite common in mathematics.
@ Definite descriptions naturally lead to undefined terms such as:

> LX.X F X.
> X . X% =2

@ Definite descriptions can be eliminated as shown by B. Russell in
his famous 1905 paper )

@ Definite description is thus a source of practical expressivity, but
not theoretical expressivity.
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Indefinite Description

@ An indefinite description is a term of the form
“some x such that A holds".

@ In logic, an indefinite description is often written as e x . A.

@ The use of indefinite description is common in mathematics and
computer science.

@ Indefinite descriptions naturally lead to undefined terms such as:

> €X.X F X.
> ex. X2 = 2.

@ Indefinite descriptions cannot be eliminated in the same way as
definite descriptions.
@ Indefinite description entails the axiom of choice.

@ Universal and existential quantification can be defined using

indefinite description.
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The Trouble with Traditional Logics

@ In traditional logics terms are always defined.

@ This is true in particular in first-order logic and simple type
theory.

@ As a result, the use of partial functions and definite and
indefinite description is problematic in traditional logics.

@ There are many approaches to handling partial functions and
undefinedness in traditional logics (see [3, 15, 17]).
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Approach 1: Partial Functions as Relations

@ An n-ary partial function f is represented by the (n+ 1)-ary
relation that denotes the graph of f.

@ Advantages:

» Easy to implement.
» Logic does not have be changed.

@ Disadvantages:

» Statements become very verbose.

» Partial functions are handled differently from total functions.

» Does not handled definite and indefinite descriptions.
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Approach 1: Examples

@ Example 1:

top : Stack x Elt — Bool.
Vs : Stack, e : Elt.

top(s, e) < s’ : Stack . s = push(s’, e).

® Example 2:
div: R X R x R — Bool.
Vx,v,z:R.

W. M. Farmer

div(x,y,z) &y #0ANz=xxy *
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Approach 2: Domain Predicates
@ For each partial function f there is a predicate dom¢ such that
domf(x) iff x € Dr.

@ In a formula, each application of f is guarded by a corresponding
application of domg¢:

» doms(a) = A(f(a)).
@ Advantages:

» Easy to implement.
» Logic does not have be changed.
» Partial and total functions are handled in the same way.

@ Disadvantages:

» Statements become very verbose.
» Does not handled definite and indefinite descriptions.
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Approach 2: Examples

@ Example 1:

top : Stack — Elt.
domy,, : Stack — Bool.

Vs : Stack, e : Elt . top(push(s,e)) = e.
Vs : Stack .
domy,p(s) < 3’ : Stack, e : Elt . s = push(s’, e).

@ Example 2:

/R xR —R.
dom/:R><R—>Boo|.

Vx,y:R.dom_i(y) = x/y =xxy L
Vx,y: R.dom/(x,y) < dom_i(y).
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Approach 3: Type Enforcement

@ An application f(a) of a function f to an argument a is
well-formed only if a € Dsy.

@ This is enforced with a type system: f(a) is well-formed only if
f(a) is type correct.

@ Partial functions are thus treated as total functions on a
restricted type.

» For example, the type of / would be R x (R\ {0}).
@ Advantages:

» Partial functions are effectively total functions.
» Can be used with some traditional logics.

@ Disadvantages:

» Requires a sophisticated type system.
» Type checking is undecidable.
» Does not handled definite and indefinite descriptions.
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Approach 3: Examples

@ Example 1:

push : Stack x Elt — PushStack
top : PushStack — Elt.

Vs : Stack, e : Elt . top(push(s,e)) = e.

® Example 2:

/:RxR? =R,
Vx:R,y :R?. x/y=xxyL

W. M. Farmer
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Approach 4: Unspecified Values

@ A term is considered undefined if its value is completely
unspecified.

» Thus an undefined term has some value, but nothing can be
said about it.

@ Advantages:

» Easy to implement.

» Logic does not have to be changed.

» Handles both partial functions and definite and indefinite
descriptions.

@ Disadvantages:

» Undefinedness can only be expressed implicitly.
» Statements often require the use of definedness conditions.
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Approach 4: Examples

@ Example 1:

top : Stack — Elt.

Vs : Stack, e : Elt . top(push(s, e)) = e.

@ Example 2:

/:-RxR—R
Vx,y:R.x/y=xxy 1

W. M. Farmer
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Approach 5: Internal Error Values
@ The value of an undefined term of type « is some error value
e, €D,.
@ Advantages:

» Logic does not have be changed.
» Handles both partial functions and definite and indefinite
descriptions.

@ Disadvantages:

» Often definedness conditions are needed to distinguish between
when e, means undefined and when e, means the value of D,,.
» Need a different error element for each type.
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Approach 5: Examples

@ Example 1:

top : Stack — Elt.

Vs : Stack, e : Elt . top(push(s, e)) = e.
top(empty_stack) = —1.

® Example 2:

/:RxR—R.
Vx,y:R.y#0=x/y =xxy %
Vx:R.x/0=0.
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Approach 6: External Error Values

@ For each type «, an error value 1, Is added to o to produce a
new type o .

» Dy, = Do U{Ly}, and « is thus a subtype of o .
@ A term of type o is undefined if its value is L.
@ Advantages:

» Error values are separate from other values.
» Handles both partial functions and definite and indefinite

descriptions.

@ Disadvantages:

» Logic must be modified to include error values.
» Quantification very often needs to be restricted to the nonerror

values of a type.
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Approach 6: Examples

@ Example 1:
top : Stack;, — Elt;.

Vs : Stack, e : Elt . top(push(s,e)) = e.
top(empty_stack) = L g.
tOP(J—Stack) — J—EIt-

@ Example 2:
/:R_]_XRJ_—>RJ_.

Vx,y:R.y#0=x/y =xxy %
Vx:R.x/0= Lg.
Vx,y :RL . (x=1grVy=1gr)=x/y = Lg.
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Traditional Approach to Undefinedness

There is a traditional approach to undefinedness [6, 8] employed in
mathematical practice that is based on three principles:

1. Atomic terms (i.e., variables and constants) are always defined.

2. Compound terms may be undefined.

» A function application f(a) is undefined if
f is undefined, a is undefined, or a & dom(f).
» A definite description “the x that has property P" is undefined

If there is no x that has property P or there is more than one x
that has property P.

» An indefinite description “some x that has property P" is
undefined if there is no x that has property P.

3. Formulas are always true or false and hence are always defined.

» A predicate application p(a) is false if p is undefined, a is
undefined, or a ¢ dom(p).
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Benefits of the Traditional Approach

@ Meaningful statements can include undefined terms.

Vx:R.0< x= (v/x)? =
0< 2= (v/-2)2=—

@ Function domains can be implicit.
~ 1y 1
k(x) ~ <+ —=5.

(£) )~ 259,

@ Definedness assumptions can be implicit, and as a result,
expressions involving undefinedness can be very concise.

Vx,y,z:R.§:Z:>X:y>|<z.

@ Improper function applications and definite and indefinite
descriptions are handled in the same way.
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Formalizations of the Traditional Approach

@ Several logicians, computer scientists, and software engineers
have independently proposed logics that are essentially

formalizations of the traditional approach to
undefinedness [1, 2, 16, 18, 19].

@ These logics have been obtained by slightly modifying traditional
logics such as first-order logic and simple type theory.
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Part 2
First-Order Logic with Undefinedness
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Two Versions of First-Order Logic

@ FOL is a version of traditional first-order logic.

» All terms are defined.
» All functions are total.

@ FOL with Undefinedness (FOLwU) is a version of first-order logic
that is obtained by slightly modifying FOL.

» Formalizes the traditional approach to undefinedness.

» New machinery is convenient, but not essential.
» See [1, 13] for details.
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Syntax of FOL: Languages

@ Let V be a fixed infinite set of symbols called variables.
@ A language of FOL is a triple L = (C, F,P) where:

» C is a set of symbols called individual constants.

» F is a set of symbols called function symbols, each with an
assigned arity > 1.

» P is a set of symbols called predicate symbols, each with an
assigned arity > 1. P contains the binary predicate symbol =.

» V, C, F, and P are pairwise disjoint.
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Syntax of FOL: Terms and Formulas

o Let L = (C,F,P) be a language of FOL.

@ A term of L is a string of symbols inductively defined by the
following formation rules:

» Each x €V and a€ C is a term of L.
» If f € Fis n-ary and ty,...,t, are terms of L, then f(t1,...,t,)
Is a term of L.

@ A formula of L is a string of symbols inductively defined by the
following formation rules:

» If p€Pis n-ary and t1,...,t, are terms of L, then
p(ti,...,ty) is a formula of L.

» If A and B are formulas of L and x € V, then (—A) and
(A= B), and (Vx . A) are formulas of L.

@ =, -, =, and V are the logical constants of FOL.
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Syntax of FOL: Notational Definitions

W. M. Farmer

denotes
denotes
denotes
denotes
denotes
denotes
denotes
denotes
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Semantics of FOL: Models

@ A model for a language L = (C, F,P) of FOL is a pair
M = (D, ) where D is a nonempty domain (set) and / is a total

function on C U F U P such that:

1. IfaeC, I(a) € D.

2. If f € Fis n-ary, I(f) : D" — D and I(f) is total.

3. If pePis n-ary, I(p): D" — {T,F} and I(p) is total.
4. I(=) is idp, the identity predicate on D.

@ A variable assignment into M is a function that maps each
x € V to an element of D.

@ Given a variable assignment ¢ into M, x € V), and d € D, let
@[x +— d] be the variable assignment ¢ into M such ¢'(x) = d

and ¢'(y) = p(y) for all y # x.
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Semantics of FOL: Valuation Function (1/2)

The valuation function for a model M for a language L = (C, F,P)
of FOL is the total binary function VM that satisfies the following
conditions for all variable assignments ¢ into M and all terms t and
formulas A of L:

1. Let t € V. Then VY(t) = ¢(t).
2. Let t € C. Then V)/(t) = I(t).
3. Let t = f(ty,...,t,). Then

VI(t) = I(F) (V) (1), ..., V) (tn).
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Semantics of FOL: Valuation Function (2/2)
4. Let A= p(ty,...,t,). Then

VI(A) = I(p)(V)(t1), ..., V)(tn)).

%)

5. Let A= (=A). If V)(A') =F, then V'(A) = T; otherwise
V(A) =F.

6. Let A= (A, = Ap). If VM(A;) =T and VM(A,) = F, then
V'(A) = F; otherwise V(A) = .

7. Let A= (Vx . A). If VI ,(A) =T forall d € D, then
V'(A) = T; otherwise V)/(A) =F.
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Proof System of FOL: Axiom Schemas

A= (B=A).

(A=(B=C(C)=((A=B)= (A= ()).

(A= -B)=(B=A).

(Vx. A= B)= (A= Vx.B) where x is not free in A.
(Vx.A)= A[lx — t] where t is free for x in A.
Vx.x=x.

s=t= (A= A") where A" is the result of replacing one
occurrence of s in A with t, provided that the occurrence of s is
not a variable immediately after V.

N o ok b=
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Proof System of FOL: Rules of Inference

1. From A and A = B infer B.
2. From A infer Vx . A.
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Syntax of FOLwU: Languages

@ Let V be a fixed infinite set of symbols called variables.
@ A language of FOLwU is a triple L = (C, F,P) where:

» C is a set of symbols called individual constants.

» F is a set of symbols called function symbols, each with an
assigned arity > 1.

» P is a set of symbols called predicate symbols, each with an
assigned arity > 1. P contains the binary predicate symbol =.

» V, C, F, and P are pairwise disjoint.
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Syntax of FOLwU: Terms and Formulas

o Let L =(C,F,P) be a language of FOLwU.

@ A term of L is a string of symbols inductively defined by the
following formation rules:

» Each x €V and a € C is a term of L.
» If f € Fis n-ary and ty,...,t, are terms of L, then f(t1,...,t,)

Is a term of L.
» If x €V and A is a formula of L, then (Ix . A) is a term of L.

@ A formula of L is a string of symbols inductively defined by the
following formation rules:

» If p€ P is n-ary and ty,...,t, are terms of L, then
p(t1,...,ty) is a formula of L.

» If A and B are formulas of L and x € V, then (—A) and
(A= B), and (Vx . A) are formulas of L.

@ =, 1, =, V, I are the logical constants of FOLwU.
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Syntax of FOLwU: Notational Definitions

(s =1)
(s # t)
N

F
(AV B)
(AN B)
(A< B)
(Ix . A)
(t1)
(tT)

(s >~ t)
1
if(A, s, t)

denotes
denotes
denotes
denotes
denotes
denotes
denotes
denotes
denotes

denotes
denotes
denotes
denotes

where x does not occur in t
~(t1).

(slVt])=s=t

Ix.x#x

Ix. (A= x=s5)V(-A=x=1)

where x does not occur in A, s, or t
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Semantics of FOLwU: Models

@ A model for a language L = (C, F,P) of FOLwU is a pair
M = (D, ) where D is a nonempty domain (set) and / is a total

function on C U F U P such that:
1. IfaeC, I(a) € D.
2. If f € Fis n-ary, I(f) : D" — D and I(f) is partial.
3. f pePis n-ary, I(p): D" — {T,F} and /(p) is total.
4. I(=) is idp, the identity predicate on D.

@ A variable assignment into M is a function that maps each
x € V to an element of D.

@ Given a variable assignment ¢ into M, x € V), and d € D, let
@[x +— d] be the variable assignment ¢ into M such ¢'(x) = d

and ¢'(y) = p(y) for all y # x.
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Semantics of FOLwU: Valuation Function (1/2)

The valuation function for a model M for a language L = (C, F,P)
of FOLwU is the partial binary function VM that satisfies the
following conditions for all variable assignments ¢ into M and all
terms t and formulas A of L:

1. Let t € V. Then VY(t) = ¢(t).
2. Let t € C. Then V)/(t) = I(t).

3. Let t = f(ty,...,t,). If V (tl) V.(t,) are defined and
[(f) is defined at (V, (tl), ( )) then

VM) = I(F)(VM(t), ..., VM(t,)).

¥

Otherwise V)/(t) is undefined.

4. Let t = (Ix.A). If VI! _ ,(A) =T for a unique d € D, then
VM(t) = d. Otherwise V)/(t) is undefined.
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Semantics of FOLwU: Valuation Function (2/2)
5. Let A= p(ty,...,t,). If VY(t1),..., V]/(t,) are defined, then

VI(A) = I(p)(V.)(t1), ..., V.)(tn)).

Otherwise, V)'(A) =F.

6. Let A= (—A). If VI(A) =F, then V¥(A) = T; otherwise
V(A) =F.

7. Let A= (A = Ay). If V)/(A1) =T and V)(A;) =F, then
V'(A) = F; otherwise V(A) = .

8. Let A= (Vx.A). Ifv¥ (A)=rTforall d €D, then

px—d]

M(AY — - M(A) —
V.(A) = T; otherwise V'(A) = F.
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Proof System of FOLwU: Axiom Schemas

A= (B=A).

(A= (B=0C))= (A= B)= (A= ()).

(A= —-B) = (B=A).

(Vx. A= B)= (A= Vx.B) where x is not free in A.
(Vx.A)At])= Alx — t| where t is free for x in A.
Vx.x=x.

s~t= (A= A*) where A" is the result of replacing one
occurrence of s in A with t, provided that the occurrence of s is
not a variable immediately after V or 1.

N o ok b=
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Proof System of FOLwU: Axiom Schemas

8. x| wherexeV.
9. ¢| where c €.
10. (LTV---Vit,T)= f(t1,...,t,)T where f € F is n-ary.
11. (5t TV---Vt,])= —p(ts,...,t,) where p € P is n-ary.

12, (3'x. A) = ((Ix.A) ] ANAlx— (Ix.A)]) where (Ix.A)is
free for x in A.

13. =(3!1x . A) = (Ix. A1

W. M. Farmer CADE-22 Tutorial: Logics with Undefinedness 42



Proof System of FOLwU: Rules of Inference

1. From A and A = B infer B.
2. From A infer Vx . A.
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43



FOLwU: Five Examples
1. Vs .top(s) ~1e.ds" .s=push(s,e).
2. Vx,y . x/y ~xx*y?
Vx,y . x/ly~lz.x=yxz.

3. f(2,3) | where
Vx,y . f(x,y) = /VXTy—vx—y.

tan(x)+tan(y)

4. Vx,y . tan(X—F)/)l A 1+tan(x)*tan(y)l =
_tanx)+tan(y)
tan(x +¥) = S fan(x-tant):

5. Vx . limy_<,_ f(x) =Ilim,_<,. f(x) = (lime_s,f(x))].
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The Elimination Theorem

The machinery in FOLwU for partial functions and undefined
terms is purely a convenience — it can freely eliminated.

Elimination Theorem. For every theory T of FOLwU, there is
a theory T* of FOL and a translation from each formula A of T
to a formula A* of T* such that:

TEA iff T" A"

Proof. First, eliminate each n-ary function symbol f by replacing
it with a (n+ 1)-ary predicate symbol ps that denotes its graph.
For example, p(s, f(t)) is replaced with Jy . ps(t,y) A p(s, y).
Second, eliminate each occurrence of I x . A by replacing it with
a unique existentially quantified variable. For example,

p(s,(Ix . A)) is replaced with 3! x . AA p(s, x).
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Notes about FOLwU

@ Formalizes the traditional approach to undefinedness.

» Functions are strict with respect to undefinedness.
» Predicates are strict with respect to undefinedness.

@ The definedness and undefinedness of a term can be directly
stated: t |, t7.

@ Undefined is like a universal external error value.
» All undefined terms have the same “value” .
@ Undefined is not a genuine value.

» Undefined cannot be an input to a function or a predicate.
» The range of a variable does not included undefined.

@ Undefined terms are indiscernible.
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Disadvantages of FOLwU

@ FOLwU is not a traditional logic.
@ FOLwU is moderately harder to implement than FOL.
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Advantages of FOLwU

@ Formalizes the traditional approach to undefinedness:

» Expressions that include undefined terms can be meaningful.

» Function domains can be implicit.

» Definedness assumptions can be implicit.

» Improper function applications and definite and indefinite
descriptions are handled in the same way.

@ Definedness checking may be performed only as needed.
@ Closer to standard mathematical practice than FOL.

@ Has same theoretical expressivity as FOL, but much greater
practical expressivity.
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W. M. Farmer

Part 3
Other Logics with Undefinedness
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Simple Type Theory

@ The traditional approach to undefinedness can be formalized in
simple type theory in much the same way as in first-order
logic [3].

@ In [11] we present a modification of Peter Andrews’ formulation

of Church’s type theory that directly formalizes the traditional
approach of undefinedness.

@ A version of Church’s type theory with undefinedness named
LUTINS [4, 5] is the logic of the IMPS theorem proving
system [14].

@ STTwU [8] is a version of STT [12],a simple version of simple
type theory, with undefinedness.
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IMPS

@ IMPS is a higher-order theorem proving system developed at The
MITRE Corporation by W. Farmer, J. Guttman, and J. Thayer.

@ Distinguishing characteristics:

1. Logic is simple type theory with undefinedness and subtypes.
2. Little theories method for organizing mathematics.
3. Proofs that combine deduction and computation.

@ The IMPS theory library contains significant portions of analysis
as well as algebra and logic.

@ Available without fee by public license (first released in 1993).

» Written in T and Common Lisp.
» User interface based on XEmacs.
» Minimally maintained.

@ IMPS web page is at

http:imps.mcmaster.ca/.
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Syntax of STTwU: Types

@ A type of STTwU is a string of symbols defined by the following

formation rules:

T1

T2

T3

Type of individuals
type|] ( )

type[+ (Type of truth values)

type[a], type[J]

type((a — ) (Function type)

@ Let 7 denote the set of types of ST TwU.

W. M. Farmer
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Syntax of STTwU: Symbols

@ The logical symbols of STTwU are:

» Function application: @ (hidden).

» Function abstraction: A.

» Equality: =.

» Definite description: I (capital iota).

» An infinite set V) of symbols called variables.

@ A language of STTwU is a pair L = (C, 7) where:

» C is a set of symbols called constants.
» V and C are disjoint.
» 7:C — 7T is a total function.
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Syntax of ST TwU: Expressions

An expression E of type o of a STTwU language L = (C, 7) is
defined by the following rules:

E1 XS V. type[al (Variable)
exprL[(X : Oé)) Oé]

E2 cec (Constant)

expr,[c, 7(c)]

expr,[A, o, expr,[F,(a — 3)]
exPrL[F(A)7 &)

x €V, type[a], expr,[B, ]

expr [(Ax:a. B),(a— B)]

expr, [E1, o], expr,[E, o]

expr [(E1 = E2), #]

x €V, typela], a # *, expr/[A, *]

expr [(Ix:a. A),

E3 (Application)

E4

(Abstraction)

E5

(Equality)

EG

(Definite description)
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Notational Definitions
T

—~ - T

AN AN AN AN AT TN

J>]>]>l>_<l_l<lij>3>
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o O
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> >~

Q
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Qm
N

=
Q

—h
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denotes
denotes
denotes
denotes

denotes
denotes
denotes
denotes
denotes
denotes
denotes
denotes
denotes

(Ax:*x.x)=(Ax:%.x)
(Ax:x.T)=(Ax:x%x.x)
A, =F
(NFx = (5 — ) . F(T)(T))
(A :x— (x— ). (A
—(=A, A =B,)
—-A, V B,
Ax:a.A)=Ax:a.T)
—(Vx:a.-A,)
dx:a.x=A,
_'(Aal)
(AulVB,]l)= A,= B,
Ix:a.x#x
Ix:a. (A= x=B,)A
(ﬂA*:>x:Ca)
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Semantics of STTwU: Standard Models

@ A standard model for a language L = (C,7) of STT is a triple
M = (D, I) where:

» D={D, :a €T} is a set of nonempty domains (sets).
» D, ={1,F}, the domain of truth values.

> D, is the set of all partial functions from D, to Dg.
> [ maps each ¢ € C to an element of D).

@ A variable assignment into M is a function that maps each
expression (x : «) to an element of D,.

@ Given a variable assignment ¢ into M, an expression (x : «), and
d € D,, let p[(x : a) — d] be the variable assignment ¢ into M
such that ¢'((x : «)) = d and ¢'(v) = p(v) for all v # (x : «).
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Semantics of STTwU: Valuation Function (1/2)

The valuation function for a standard model M = (D, /) for a
language L = (C,7) of STTwU is the partial binary function V¥ that
satisfies the following conditions for all variable assignments ¢ into M
and all expressions E of L:

1. Let Eis (x : ). Then VY(E) = p(E).
2. Let E €C. Then V)(E) = I(E).

3. Let Eg be F(A). If V)(F) is defined, V)'(A) is defined, and
V'(A) is in the domain of VY(F), then

V. (Ea) = V' (F)(V;'(A)).

¥

gt;lerwise, VM(Es) = F if 3 = and V)'(Es) is undefined if
%,
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Semantics of STTwU: Valuation Function (2/2)

4. Let E,_3 be (Ax:a.B). Then V)/(E,_p) is the partial
function f : D, — Dg such that, for each d € D,,
f(d) = Vg’)‘[”(x:a)}_)d](B) if Vgé\fl(x:a)Hd](B) is defined and f(d) is
undefined if V(. _.4(B) is undefined.

5. Let E, be (E; = E). If VY(E) is defined, V)(E;) is defined,
and V)/(E;) = VY(E), then V)(E.) = T. Otherwise
VM(E,) =F.

6. Let E, be (Ix: . A). If there is a unique d € D, such that
VM (A) =1, then V//(E,) = d. Otherwise, V'(E,) = F.

pl(x:a)—d]
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STTwU Proof System: Axiom Schemas (1/4)
A1l (Truth Values)

Vi:(x—x). (fF(T)Af(F)) < (Vx:x.f(x)).

A2 (Leibniz' Law)

Vx,yra.(x=y)=(Vp:(a—x).p(x) < ply))

A3 (Extensionality)

Vi, g: (a—=pB).(fF=g)c (Vx:a.f(x)~g(x)).

A4 (Beta-Reduction)
Avl = (Ax:a. Bg)(Ay) ~ Bsl(x : a) — A4l

provided A, is free for (x : &) in Bg.
W. M. Farmer CADE-22 Tutorial: Logics with Undefinedness

59



STTwU Proof System: Axiom Schemas (2/4)
A5 (Variables are Defined)

(x 1) wherexeVand ae 7.
A6 (Constants are Defined)
c| where ceC.
A7 (Function Abstractions are Defined)
(Ax:a.Bg)l

A8 (Predicate Applications are Defined)

Foi(As)
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STTwU Proof System: Axiom Schemas (3/4)

A9 (Improper Predicate Application)
(Fams TV Aal) = =Fasi(Aa).
A10 (Improper Function Application)
(FasT VALT) = Fa_p(As)T where 3 # x.
A11 (Improper Equality)
(AL TV B,T) = —(As = B,).
A12 (Equality and Quasi-Quality)

Al = (Byl = (Ay = B,) ~ (A, = B,)).
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STTwU Proof System: Axiom Schemas (4/4)

A13 (Proper Definite Description)
A!x:a.A) =

(Ix:a.A) ] ANAfx:a)— (Ix:a.A)])

where o # % and provided (Ix : « . A,) is free for (x : ) in A,.

A14 (Improper Definite Description)

(d!'x:ra.A) = (Ix:a.A,)T where a # x.
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STTwU Proof System: Rules of Inference
R1 (Modus Ponens) From A, and A, = B, infer B,.

R2 (Quasi-Equality Substitution) From A, ~ B, and C, infer
the result of replacing one occurrence of A, in C, by an
occurrence of B, provided that the occurrence of A, in C, is

not immediately preceded by A.
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Simple Type Theory with Subtypes

@ The type system of a logic like STTwU can be extended to
admit subtypes.

» a << B means D, C Dg.
» Types are covariant with respect —:
If o« < o and B < ', then (a — B) < (¢/ — 7).
» Exampless N Z < Q< Rand (N—2Z) < (R— Q).

@ The IMPS logic LUTINS is an example of a simple type theory
with undefinedness and subtypes.

» Subtypes are called sorts in IMPS.

@ Every expression is assigned one nominal type but can “reside”
In many types.

» (Aq | B) denotes Ix : §. x = A,.
» (Anl) denotes (A, | ).

@ Subtypes are quite convenient for expressing mathematics.
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NBG Set Theory

@ STMM [7, 13] is a version of NBG set theory intended to be a
Set Theory for Mechanized Mathematics.

@ NBG set theory admits proper classes as well as sets.

» The universe of sets is a proper class.
» Total functions like the cardinality function is a proper class.

@ STMM is a logic with undefinedness.

@ STMM has a type system with a universal type, function types,
and subtypes.

@ Definedness checking includes checking for whether a term
denotes a set (as opposed to a proper class).
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Chiron

Chiron [9, 10] is a logic based on that is
intended to be a practical, general-purpose logic for mechanizing
mathematics.

It Is a

It has a with a universal type, dependent types,
dependent function types, subtypes, and possibly empty types.

It has a
that employs quotation and evaluation.

Ungrounded terms are treated as being undefined, and
ungrounded formulas (like the liar paradox) are treated as being
false.

W. M. Farmer CADE-22 Tutorial: Logics with Undefinedness

66



Part 4

Implementing a Logic with Undefinedness
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Overview

@ Implementing a logic with undefinedness is very similar to
iImplementing the corresponding traditional logic.

@ There are three key laws that must be implemented differently:

1.
2.
3.

@ All three require definedness checking.

@ These laws and definedness checking are implemented in the
IMPS system.
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Substitution for a Variable
@ In FOL the IS:

(Vx.A)= Alx — t| where t is free for x in A.
@ In FOLwU is is:
(Vx.A)At])= Alx+— t| where t is free for x in A.

@ Thus, in a logic with undefinedness, a substitution is a mapping
of variables to defined terms.

@ The substitutions found by naive matching may not be
legitimate — the definedness of the target terms must checked!

@ Candidate substitutions can be used before they are checked!

» See the IMPS method of finding applicable macetes.
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Equality Substitution
@ In FOL the IS:

s=t= (A= A*) where A* is the result of replacing one
occurrence of s in A with t, provided that the occurrence of s is
not a variable immediately after V.

@ In FOLwU it is:

s~t= (A= A*) where A* is the result of replacing one
occurrence of s in A with t, provided that the occurrence of s is
not a variable immediately after V.

@ Thus, in a logic with undefinedness, term rewriting is based on
quasi-equality instead of equality.
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Definition of a Constant

o A c Is an axiom of the form ¢ = t.

@ In a traditional logic, the following syntactic conditions must be
verified before the definition can be added to a theory T:

» C is new, i.e., it is not in the language of T.
» t does not contain c.

@ In a logic with definedness, a definedness condition must also be
verified:

» t]isvalidin T.
@ Let T be a FOLwU theory of the real numbers.

» 2= (Ix.x=1+1)is a legitimate definition in T.
» inv-zero = 07! is not a legitimate definition in T.
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Definedness Checking

e Effective definedness checking is crucial for an implementation of
a logic with undefinedness.

» Reasoning leads to a proliferation of definedness conditions,
most of which need to be checked.
» Definedness checking is an undecidable problem.

@ The IMPS simplifier can automatically check almost all
definedness conditions that typically arise in IMPS proofs.

» When the IMPS simplifier fails, a nontrivial argument is usually
needed to verify the definedness condition.
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Definedness Checking in IMPS

@ The IMPS simplifier checks definedness in a type, i.e, formulas
of the form t | «.

@ The simplifier employs theorems concerning the domain and
range of functions and the relationship between types such as:

» “f Is total”.

» (= akK .
» Vxyiag,.. Xn i an . C(xg, ..., xn) = (F(x1, ..., xp) | ).
» Vxyiaq,...,Xn . C(x1, .oy Xn, F(X1,..0, Xn))
@ The simplifier also uses the and cached
results.
@ Example:

Vx,y:Z,z:Q.2<z=((xxy—3/|z]) | Q).

@ Definedness checking in IMPS is very effective in practice!
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@ A practical logic needs to handle undefinedness effectively.

@ The traditional approach to undefinedness, which is entrenched
in mathematical practice, is very effective.

@ This approach can be formalized in a traditional logic by slightly
modifying the logic.

» The syntax needs little, if any, modification.
» The semantics is changed to admit partial functions and
undefined terms.

» The proof system needs new laws about definedness and
modified laws involving variable and equality substitution.

@ A logic of this kind can be effectively implemented.

» Good definedness checking is crucial.
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