

CS 3IS3 Fall 2007

06 Design for Security

William M. Farmer

Department of Computing and Software
McMaster University

11 November 2007

Design for Security

- For an information system to be secure, it must be **designed for security**.
 - ▶ Security is very difficult to add on as an afterthought.
- Due to security's pervasive nature, it is difficult to design for security.
- The principles of good security design are largely the same as the principles of good software design.
- Saltzer and Schroeder (1975) give eight principles for the design and implementation of security mechanisms.

1. Principle of Least Privilege

- The principle of least privilege states that a subject should be given only those privileges that it needs in order to complete its task.
- The need-to-know principle is a special case of this principle.
- As a consequence of this principle, access rights should be revoked when they are no longer needed.
- Most systems do not have the granularity in privileges to apply this principle precisely.

2. Principle of Fail-Safe Faults

- The principle of fail-safe faults states that, unless a subject is given explicit access to an object, it should be denied access to that object.
- According to this principle, the default access to an object should be **none**.
- As a consequence of this principle, an information system should not be able to fail when it is in its initial state.

3. Principle of Economy of Mechanism

- The principle of economy of mechanism states that security mechanisms should be as simple as possible.
- “Everything should be made as simple as possible, but not one bit simpler.” — Albert Einstein.
- A simple design usually makes everything else simpler: implementation, testing, maintenance, documentation, and application.
- Complexity often leads to errors because crucial assumptions are missed or misunderstood.

4. Principle of Complete Mediation

- The principle of complete mediation requires that all accesses to objects be checked to ensure they are allowed.
- Some trusted system must be the mediator.
- Examples of mediators:
 - ▶ Operating system.
 - ▶ Type system.
 - ▶ Security manager.
- Many systems cache the results of the initial access check so that subsequent checks can be abbreviated.
 - ▶ Is this a violation of the principle?

5. Principle of Open Design

- The principle of open design states that the security of a mechanism should not depend on the secrecy of its design or implementation.
- The opposite of this principle is often called **security through obscurity**.
- Keeping a design or implementation secret does not improve security in practice.
 - ▶ Eventually the secret will be revealed or discovered, by accident or intent.
 - ▶ Weaknesses in design or implementation may take longer to be discovered by the developers.
 - ▶ The approach can lead to a false sense of security.

6. Principle of Separation of Privilege

- The principle of separation of privilege states that a system should not grant permission based on a single condition.
- The principle of separation of duty is a special case of this principle.
- Many Unix systems violate this principle with the root account.
 - ▶ Some Unix systems do not allow an su to the root account unless the user is currently in an account in the wheel group (with GID 0).

7. Principle of Least Common Mechanism

- The principle of least common mechanism states that mechanisms used to access resources should not be shared.
- Sharing resources provides a communication channel that may not be intended.

8. Principle of Psychological Acceptability

- The principle of psychological acceptability states that security mechanisms should not make the resource more difficult to access than if the security mechanisms were not present.
- If a security mechanism adds an excessive or unreasonable burden then:
 - ▶ Administrators will be more likely to make mistakes.
 - ▶ Users will be more likely to try to go around the mechanism.
- However, security mechanisms should not unnecessarily reveal information for the sake of user-friendliness.

Security Design Concepts

- A **reference monitor** is a abstract access control machine that mediates all accesses to objects by subjects.
- A **reference validation mechanisms (RVM)** is an implementation of a reference monitor.
- Requirements of an RVM:
 1. Tamper proof.
 2. Complete: Invoked in all accesses to objects.
 3. Simple: Small enough to be adequately analyzed.
- A **security kernel** is a small, self-contained part of an information system that implements a security monitor.
 - ▶ It can include both hardware and software.
 - ▶ It is often a module in the operating system.

Trusted Computing Base

- A **trusted computing base (TCB)** is the collection of all the security mechanisms in an information system that are responsible for enforcing a security policy.
 - ▶ Can include hardware, firmware, and software.
 - ▶ Is a generalization of a security kernel.
- Requirements of a TCB:
 1. Satisfies its target security policy.
 2. Protects itself, especially its software components.
 3. Small as possible.