

History

- Euclid (325–265 BC) used the axiomatic method to present the mathematics known in his time in the **Elements**
 - The axioms were considered truths
- The development of **noneuclidean geometry** by Bolyai, Gauss, and Lobachevskii (early 1800s) showed that axioms may be considered as just assumptions
- Whitehead and Russell formalized a major portion of mathematics in the **Principia Mathematica** (1910–1913)
- Bourbaki (mid 1900s) used the axiomatic method to codify mathematics in the 30 volume **Éléments de mathématique**
- Several libraries of formalized mathematics have been developed since the late 1980s using interactive theorem provers: HOL, IMPS, Isabelle, Mizar, Nqthm, Nuprl, PVS

02. The Axiomatic Method

Instructor: W. M. Farmer

Revised: 18 January 2001

1

3

What is the Axiomatic Method?

1. A mathematical model is expressed as a set of axioms (in a language) called an **axiomatic theory**
2. New concepts are introduced by making **definitions**
3. Assertions about the model are stated as **theorems** and proved from the axioms

Notes:

- The axiomatic method is a method of **presentation**, not a method of **discovery** (Lakatos)
- The axiomatic method can be used as a method of **organization**

Axiomatic Theories

- **Theory** = formal language + set of axioms
- **Language**: vocabulary for objects and their properties
 - Has a precise semantics (with a notion of logical consequence)
 - Can be used to describe multiple situations
 - The language usually belongs to a **logic**
- **Axioms**: assumptions about the objects and properties
 - Specify a class of **models**
 - Basis for proving **theorems**

2

4

CS 773 Winter 2001

Example: Theory of Partial Order

Benefits of Axiomatic Theories

- Language: A first-order logic language with a 2-place predicate symbol \leq
 - $a \leq b$ is intended to mean a is less than or equal to b
- Axioms:
 - **Reflexivity.** $\forall x. x \leq x$
 - **Transitivity.** $\forall x, y, z. (x \leq y \wedge y \leq z) \supset x \leq z$
 - **Antisymmetry.** $\forall x, y. (x \leq y \wedge y \leq x) \supset x = y$
- The theory has infinitely many nonisomorphic models

5

7

Example: Peano Arithmetic

- Language: A second-order logic language with a constant symbol 0 and 1-place function symbol S
 - 0 is intended to represent the number zero
 - S is intended to represent the successor function, i.e., $S(a)$ means $a + 1$
- Axioms:
 - **0 has no predecessor.** $\forall x. \neg(0 = S(x))$
 - **S is injective.** $\forall x, y. S(x) = S(y) \supset x = y$
 - **Induction principle.** $\forall P. (P(0) \wedge \forall x. P(x) \supset P(S(x))) \supset \forall x. P(x)$
 - Second-order Peano arithmetic is **categorical**, i.e., it has exactly one model up to isomorphism

Theory Interpretations

- A **translation** ϕ from T to T' is a function that maps the primitive symbols of T to expressions of T' satisfying certain syntactic conditions
 - ϕ determines:
 - A mapping of expressions of T to expressions of T'
 - Set of sentences called **obligations**
- ϕ is an **interpretation** if it maps the theorems of T to theorems of T'
 - Sufficient condition: the obligations of ϕ are theorems of T'
- Interpretations are information conduits!

6

8

Example: Theory of Computer Networks

- Theory name: Networks

- Language: Many-sorted first-order logic language with the following sorts and function symbols:

Sorts	Function symbols
boxes	box-of-interface
wires	wire-of-interface
interfaces	address-of-interface
addresses	

- Example axioms:

- “Every box has a unique loopback interface”
- “The address of a loopback interface is 127.0.0.1”

9

Example: Theory of Bipartite Graphs

- Theory name: Bipartite Graphs
- Language: Many-sorted first-order logic language with the following sorts and function symbols:

Sorts	Operators
red-nodes	red-node-of-edge
blue-nodes	blue-node-of-edge
edges	

- No explicit axioms

Example: Bipartite Graphs to Networks

- Let $\Phi_{BG \rightarrow N}$ be the translation from Bipartite Graphs to Networks defined by:

red-nodes \mapsto boxes
 blue-nodes \mapsto wires
 edges \mapsto interfaces

- $\Phi_{BG \rightarrow N}$ has no obligations
- $\Phi_{BG \rightarrow N}$ is an interpretation
- “Transitivity of red-to-red connectivity” maps to “transitivity of box-to-box connectivity”

11

Example: Symmetry Interpretation

- Let $\Phi_{BG \rightarrow BG}$ be the translation from Bipartite Graphs to Bipartite Graphs defined by:

red-nodes \mapsto blue-nodes
 blue-nodes \mapsto red-nodes
 edges \mapsto edges

red-node-of-edge \mapsto blue-node-of-edge
 blue-node-of-edge \mapsto red-node-of-edge

- $\Phi_{BG \rightarrow BG}$ has no obligations:

- $\Phi_{BG \rightarrow BG}$ is an interpretation
- “Transitivity of red to red connectivity” maps to “transitivity of blue to blue connectivity”

10

12

Two Versions of the Axiomatic Method

1. **Big Theory:** A body of mathematics is entirely represented in one theory

- Often a powerful, highly expressive theory like set theory is selected
- All reasoning is performed within this single theory

2. **Little Theories:** A body of mathematics is represented as a network of theories

- Bigger theories are composed of smaller theories
- Theories are linked by interpretations
- Reasoning is distributed over the network

13

Benefits of Little Theories

- Mathematics can be developed using the most appropriate vocabulary at the most appropriate level of abstraction
- Emphasizes reuse: if A is a theorem of T , then A may be reused in any “instance” of T
- Enables perspective switching
- Enables parallel development
- Inconsistency can be isolated: there are no interpretations of an inconsistent theory in a consistent theory, so inconsistency cannot spread from one theory to another

14