

Type Theory

- A higher-order logic can be viewed as a theory of types
- Russell introduced a logic called the **Theory of Types (TT)** in 1908 to serve as a foundation for mathematics
 - Included a hierarchy of types to avoid set-theoretic paradoxes like Russell's Paradox
 - Employed as the logic of Whitehead and Russell's *Principia Mathematica*
 - Not used today due to its high complexity
- Chwistek and Ramsey suggested a simplified version of TT called **Simple Type Theory (STT)** in the 1920s
 - A formulation of STT with lambda-notation was introduced by Church in 1940

07. Higher-Order Logic

Instructor: W. M. Farmer

Revised: 20 March 2001

1

3

What is Higher-Order Logic?

- Higher-order functions (or predicates) can be represented by terms
 - Note: A function $f : A \rightarrow B$ is **higher-order** if A or B contains functions
- Quantified variables can range over functions
- Types or sorts are used to:
 - Organize the functions of the logic
 - Control the formation of expressions
 - Classify expressions by value

Intuitionistic Type Theory

- Several intuitionistic or constructive type theories have been developed
- Examples:
 - Martin-Löf's **Intuitionistic Type Theory** (1980)
 - Coquand and Huet's **Calculus of Constructions** (1984)
- Many intuitionistic type theories exploit the Curry-Howard Formulas-as-Types Isomorphism
 - Formulas serve as types or specifications
 - Terms serve as proofs or programs

2

4

Syntax of STT

- The set \mathcal{T} of **types** of STT is defined inductively by:
 - ι (type of individuals) is a type
 - $*$ (type of truth values) is a type
 - If α and β are types, then $(\alpha \rightarrow \beta)$ is a type
- A **language** of STT is a tuple $L = (\mathcal{V}, \mathcal{C}, \tau)$ where:
 - \mathcal{V} is an infinite set of **variables**
 - \mathcal{C} is a set of **constants**
 - $\tau : \mathcal{C} \rightarrow \mathcal{T}$ is a total function
- The set of **expressions** of L is defined inductively

Extensions to STT

- Types
 - Additional type constants and constructors
 - Type variables
 - Subtypes
- Expressions
 - Additional expression constants and constructors
 - Multivariate functions
 - τ

5

7

Semantics of STT

- Three kinds of semantics:
 - Standard: Terms are defined, formulas are two-valued
 - Partial: Terms may be undefined, formulas are two-valued
 - Three-valued: Formulas are three-valued
- A **model** of a language $L = (\mathcal{V}, \mathcal{C}, \tau)$ of STT is a pair $M = (\mathcal{D}, I)$ where:
 - $\mathcal{D} = \{D_\alpha : \alpha \in \mathcal{T}\}$
 - D_ι is nonempty and $D_* = \{\top, \text{F}\}$
 - $D_{(\alpha \rightarrow \beta)}$ is the set of functions from D_α to D_β
 - I maps each $c \in \mathcal{C}$ to an element of $D_{\tau(c)}$
- The **valuation** function for L in M is defined inductively

6