

Theory Creation

- Theories can be created in a several ways:

- From scratch
- By forming a union of a set of theories
- By adding new vocabulary and axioms to a theory
- By instantiating a parameterized theory
- By instantiating a theory via an interpretation

CS 773 Winter 2001

09. Theory Development

Instructor: W. M. Farmer

Revised: 30 March 2001

1

3

Conservative Theory Extension

- A conservative extension T' of T adds new machinery to T without compromising the original machinery of T
- The **obligation** of a purported conservative extension is a formula that implies that the extension is conservative
- Since T and T' are essentially the same theory, T' can be implemented by overwriting T
 - Avoids a proliferation of closely related theories
- There are two important kinds of conservative extensions that add new vocabulary to a theory:
 - Definitions
 - Profiles

Overview

- Mathematics is a process of creating, exploring, and connecting mathematical models
- Formalized mathematics is a process of developing axiomatic theories in a formal logic involving:
 - Theory creation
 - Conservative theory extension
 - Theory exploration
 - Theory interpretation

2

4

Definitions

- A **definition** is a conservative extension that adds a new symbol s and a defining axiom $A(s)$ to a theory T
 - In some logics, the defining axiom can have the form $s = D$ (where s does not occur in D)
- The obligation of the definition is
$$\exists!x. A(x)$$
- The symbol s can usually be eliminated from any new expression of involving s
- Tools of theory exploration:
 - Theorems
 - Counterexamples
 - Computations

5

7

Theory Exploration

- The logical consequences of a theory are explored by:

- Proving conjectures
- Performing computations

- Products of theory exploration:

- Theorems
- Proofs
- Counterexamples
- Computations

Profiles

- A **profile** is a conservative extension that adds a set $\{s_1, \dots, s_n\}$ of symbols and a profiling axiom $A(s_1, \dots, s_n)$ to a theory T
- The obligation of the profile is
$$\exists x_1, \dots, x_n. A(x_1, \dots, x_n)$$

5

7

Theorems

- Facts about a theory are recorded as theorems
- A theorem is usually installed in a theory only if it has been verified by a proof
- A theorem may sometimes be installed without a proof:
 - A theorem verified by a decision procedure
 - A theorem verified by a counterexample
 - A theorem imported via an interpretation
 - A theorem shown by a metatheorem
- Profiles can be used for introducing:
 - Underspecified objects
 - Recursively defined functions
 - Abstract datatypes

6

8

Transformers

- A **transformer** is a function that maps the expressions of a language L to the expressions of a language L'
 - Usually, $L \leq L'$, $L' \leq L$, or $L = L'$
- A transformer can be used to represent an expression transforming operation such as an evaluator, a simplifier, a rewrite rule, a rule of inference, a decision procedure, or an interpretation of one language in another

- Sound transformers can be:

- Generated from theorems (e.g., theorem macetes)
- Constructed from other transformers using certain constructors (e.g., compound macetes)
- Obtained by instantiating abstract transformers (e.g., algebraic and order processors)
- Manually defined and verified

9

Theory Interpretations

- Theory interpretations can be used to:
 - Transport theorems, definitions, and profiles
 - Instantiate theories
 - Compare the strength of theories
 - Show relative consistency of theories
 - Show theory extension conservativity
- Logic interpretations can be used to interpret a theory in one logic in a theory of another logic

10