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Traditional Approach to Partial
Functions and Undefinedness

e EXxpressions may be undefined

— Constants, variables, A-expressions are always defined

— Definite descriptions may be undefined:
(Iz: R.zxxz=2)

— Functions may be partial and thus their applications
may be undefined: 1/0, /-1

— An application of a function is undefined if any
argument is undefined: 0x* (1/0)

e Formulas are always true or false
— Predicates must be total

— An application of a predicate is false if any argument
is undefined: 1/0 =1/0

Candidates for an Alternative Logic
e Partial First-Order Logic (PFOL) %

e Higher-order logic

— Simple type theory
— Extensions of simple type theory
— Other type theories

e Set theories

— Zermelo-Fraenkel (ZF) set theory
— Von-Neumann-Bernays-Godel (NBG) set theory

e Hybrid logics
— LUTINS (IMPS logic) %
— Basic Extended Simple Type Theory (BESTT) %

— A Set Theory for Mechanized Mathematics (STMM) %
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Partial First-Order Logic (PFOL)

e Version of first-order logic

— Usual logical constants: =,—,A,V,D,=,V, 3
— Definite description operator: 1

e Semantics is based on the traditional approach to partial
functions and undefinedness

— Terms may be undefined
— Formulas are always true or false

e Undefined terms are indiscernible

— PFOL is a “logic of definedness”, not a “logic of
existence”

e The new machinery—partial functions and definite
descriptions—is purely a convenience and is eliminable
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What is Higher-Order Logic?

e Higher-order functions (or predicates) can be represented
by terms

— Note: A function f: A — B is higher-order if A or B
contains functions

e Quantified variables can range over functions

e Types or sorts are used to:

— Organize the functions of the logic
— Control the formation of expressions
— Classify expressions by value

Intuitionistic Type Theory

e Several intuitionistic or constructive type theories have
been developed

e Examples:

— Martin-L6f's Intuitionistic Type Theory (1980)
— Coquand and Huet’'s Calculus of Constructions (1984)

e Many intuitionistic type theories exploit the Curry-Howard
Formulas-as-Types Isomorphism

— Formulas serve as types or specifications
— Terms serve as proofs or programs

Type Theory
e A higher-order logic can be viewed as a theory of types

e Russell introduced a logic called the Theory of Types (TT)
in 1908 to serve as a foundation for mathematics

— Included a hierarchy of types to avoid set-theoretic
paradoxes like Russell's Paradox

— Employed as the logic of Whitehead and Russell's
Principia Mathematica

— Not used today due to its high complexity

e Carnap, Chwistek, Ramsey and others suggested a

simplified version of TT called Simple Type Theory (STT)
in the 1920s

— A formulation of STT with lambda-notation was
introduced by Church in 1940

Syntax of STT

e The set 7 of types of STT is defined inductively by:
— ¢ (type of individuals) is a type
— x (type of truth values) is a type
— If a and B are types, then (a — B) is a type

e A language of STT is a tuple L = (V,C,7) where:

— YV is an infinite set of variables
— C is a set of constants
— 7:VUC — T is a total function

e The set of expressions of L is defined inductively




Semantics of STT

e Three kinds of semantics:

— Standard: Terms are defined, formulas are two-valued

— Partial: Terms may be undefined, formulas are two-
valued

— Three-valued: Formulas are three-valued

e A model of a language L = (V,C,7) of STT is a pair
M = (D, I) where:
—D={Dy:a€eT}
— D, is nonempty and Dsx = {T,F}
— D(,-p) is the set of functions from Dq to Dy
— I maps each c € C to an element of D_(,

e The valuation function for L in M is defined inductively

What is Set Theory?

Based on two simple notions:

— Set
— Membership

e Nearly all mathematical concepts can be expressed in
terms of set and membership

Set theory is, at least among mathematicians, the most
popular foundation for mathematics

e There are many different formalizations of set theory
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Extensions to STT

e Types

— Additional type constants and constructors
— Type variables
— Subtypes

e Expressions

— Additional expression constants and constructors
— Multivariate functions
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Formalizations of Set Theory

e The standard formalization of set theory is known as
Zermelo-Fraenkel (ZF) set theory [Zermelo, 1908]

e Other major formalizations:
— von-Neumann-Bernays-Godel (NBG) set theory
[von Neumann, 1925]
Morse-Kelley (MK) set theory [Kelley, 1955]
— Tarski-Grothendieck set theory [Tarski, 1938]
— New Foundations (NF) [Quine, 1937]
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ZF

e Proposed by Zermelo in 1908
— Developed to avoid the set-theoretic paradoxes
— Improvements made by Fraenkel (1922) and
Skolem (1923)
e ZF is formalized as a theory in first-order logic

— Language contains two predicate symbols = and €
— Not finitely axiomatizable

e Proper classes (e.g., the collection of all sets) are not
first-class objects

— They cannot be denoted by terms
— They are used in the metatheory
— They can be denoted by predicate symbols

e ZF is an exceedingly rich theory
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NBG

e Proposed by von Neumann in 1925

— Improvements made by R. Robinson (1937),
Bernays (1937-54), and Godel (1940)

e NBG is formalized as a theory in first-order logic

— Has the same language as ZF
— Finitely axiomatizable

e Proper classes are first-class objects

e NBG is closely related to ZF

— NBG is consistent iff ZF is consistent
— NBG and ZF share the same intuitive model of the
iterated hierarchy of sets

— NBG and ZF have very similar axioms
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Axioms of ZF

1. Extensionality

2. Foundation

3. Comprehension scheme
4. Pairing

5. Union

6. Replacement scheme
7. Powerset

8. Infinity

9. Choice
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