

Traditional Approach to Partial Functions and Undefinedness

- Expressions may be **undefined**
 - Constants, variables, λ -expressions are always defined
 - Definite descriptions may be undefined:
 $(\lambda x : \mathbf{R} . \ x * x = 2)$
 - Functions may be partial and thus their applications may be undefined: $1/0, \sqrt{-1}$
 - An application of a function is undefined if any argument is undefined: $0 * (1/0)$

CS 773 Winter 2002

05. Alternative Logics

Instructor: W. M. Farmer

Revised: 25 January 2002

- **Formulas are always true or false**
 - Predicates must be total
 - An application of a predicate is false if any argument is undefined: $1/0 = 1/0$

1

3

Candidates for an Alternative Logic

- Partial First-Order Logic (PFOL) ★
- Higher-order logic
 - Simple type theory
 - Extensions of simple type theory
 - Other type theories
- Set theories
 - Zermelo-Fraenkel (ZF) set theory
 - Von-Neumann-Bernays-Gödel (NBG) set theory
- Hybrid logics
 - LUTINS (IMPS logic) ★
 - Basic Extended Simple Type Theory (BESTT) ★
 - A Set Theory for Mechanized Mathematics (STMM) ★

Partial First-Order Logic (PFOL)

- Version of first-order logic
 - Usual logical constants: $=, \neg, \wedge, \vee, \supset, \equiv, \forall, \exists$
 - Definite description operator: \mathbf{I}
- Semantics is based on the traditional approach to partial functions and undefinedness
 - Terms may be undefined
 - Formulas are always true or false
- Undefined terms are indiscernible
 - PFOL is a “logic of definedness”, not a “logic of existence”
- The new machinery—partial functions and definite descriptions—is purely a convenience and is eliminable

2

4

What is Higher-Order Logic?

- Higher-order functions (or predicates) can be represented by terms
 - Note: A function $f : A \rightarrow B$ is **higher-order** if A or B contains functions

- Quantified variables can range over functions
- Types or sorts are used to:
 - Organize the functions of the logic
 - Control the formation of expressions
 - Classify expressions by value

5

7

Type Theory

- A higher-order logic can be viewed as a theory of types
- Russell introduced a logic called the **Theory of Types (TT)** in 1908 to serve as a foundation for mathematics
 - Included a hierarchy of types to avoid set-theoretic paradoxes like Russell's Paradox
 - Employed as the logic of Whitehead and Russell's *Principia Mathematica*
 - Not used today due to its high complexity
- Carnap, Chwistek, Ramsey and others suggested a simplified version of TT called **Simple Type Theory (STT)** in the 1920s
 - A formulation of STT with lambda-notation was introduced by Church in 1940

Intuitionistic Type Theory

- Several intuitionistic or constructive type theories have been developed
- Examples:
 - Martin-Löf's **Intuitionistic Type Theory** (1980)
 - Coquand and Huet's **Calculus of Constructions** (1984)

- Many intuitionistic type theories exploit the Curry-Howard Formulas-as-Types Isomorphism
 - Formulas serve as types or specifications
 - Terms serve as proofs or programs

Syntax of STT

- The set \mathcal{T} of **types** of STT is defined inductively by:
 - ι (type of individuals) is a type
 - $*$ (type of truth values) is a type
 - If α and β are types, then $(\alpha \rightarrow \beta)$ is a type
- A **language** of STT is a tuple $L = (\mathcal{V}, \mathcal{C}, \tau)$ where:
 - \mathcal{V} is an infinite set of **variables**
 - \mathcal{C} is a set of **constants**
 - $\tau : \mathcal{V} \cup \mathcal{C} \rightarrow \mathcal{T}$ is a total function
- The set of **expressions** of L is defined inductively

8

Semantics of STT

- Three kinds of semantics:
 - Standard: Terms are defined, formulas are two-valued
 - Partial: Terms may be undefined, formulas are two-valued
 - Three-valued: Formulas are three-valued
- A **model** of a language $L = (\mathcal{V}, \mathcal{C}, \tau)$ of STT is a pair $M = (\mathcal{D}, I)$ where:
 - $\mathcal{D} = \{D_\alpha : \alpha \in \mathcal{T}\}$
 - D_ι is nonempty and $D_* = \{\top, \perp\}$
 - $D_{(\alpha \rightarrow \beta)}$ is the set of functions from D_α to D_β
 - I maps each $c \in \mathcal{C}$ to an element of $D_{\tau(c)}$
- The **valuation** function for L in M is defined inductively

9

Extensions to STT

- Types
 - Additional type constants and constructors
 - Type variables
 - Subtypes
- Expressions
 - Additional expression constants and constructors
 - Multivariate functions

11

What is Set Theory?

- Based on two simple notions:
 - Set
 - Membership
- Nearly all mathematical concepts can be expressed in terms of set and membership
- Set theory is, at least among mathematicians, the most popular foundation for mathematics
- There are many different formalizations of set theory
 - Zermelo-Fraenkel (ZF) set theory [Zermelo, 1908]
 - von-Neumann-Bernays-Gödel (NBG) set theory [von Neumann, 1925]
 - Morse-Kelley (MK) set theory [Kelley, 1955]
 - Tarski-Grothendieck set theory [Tarski, 1938]
 - New Foundations (NF) [Quine, 1937]

11

Formalizations of Set Theory

10

12

ZF

- Proposed by Zermelo in 1908
 - Developed to avoid the set-theoretic paradoxes
 - Improvements made by Fraenkel (1922) and Skolem (1923)
- ZF is formalized as a theory in first-order logic
 - Language contains two predicate symbols = and \in
 - Not finitely axiomatizable
- Proper classes (e.g., the collection of all sets) are not first-class objects
 - They cannot be denoted by terms
 - They are used in the metatheory
 - They can be denoted by predicate symbols
- ZF is an exceedingly rich theory

13

NBG

- Proposed by von Neumann in 1925
 - Improvements made by R. Robinson (1937), Bernays (1937–54), and Gödel (1940)
- NBG is formalized as a theory in first-order logic
 - Has the same language as ZF
 - Finitely axiomatizable
- Proper classes are first-class objects
- NBG is closely related to ZF
 - NBG is consistent iff ZF is consistent
 - NBG and ZF share the same intuitive model of the iterated hierarchy of sets
 - NBG and ZF have very similar axioms

15

Axioms of ZF

1. Extensionality
2. Foundation
3. Comprehension scheme
4. Pairing
5. Union
6. Replacement scheme
7. Powerset
8. Infinity
9. Choice

14