
ENG 1D04, Lab 12: Objects, Classes, and Exceptions

This assignment should be submitted via ELM before the end of the lab session. If you are not
done the lab, please finish it at a later time and submit it using ELM. Although the submissions
for unmarked assignments are not graded, it is good to have a record of the work that you have
done in ENG 1D04.

Background

A stack is a data structure that holds a finite sequence of values such that the values are accessed
according to the principle of last in first out (LIFO). This means the last element added to a stack
is always the first element removed from the stack. The height of a stack is the number of elements
in the stack.

The following are operators that are usually associated with a stack:

1. A constructor that builds an empty stack of height 0.

2. A selector named height that returns the height of the stack.

3. A selector named top that returns the top element of the stack (i.e., the last element “pushed”
onto the stack).

4. A mutator named push that adds (“pushes”) a new element to the stack and, as a result,
increases its height by 1.

5. A mutator named pop that removes (“pops”) the top element from the stack and, as a result,
decreases its height by 1.

Stacks are employed extensively in computer systems (e.g., the call stack in an implementation of
a programming language).

Overview

Your program will test a class of stack objects. Design, implement, and test the application
described in the requirements below. An unfinished definition of a class named Stack representing
stacks whose elements are of type int is in a file named StackUnfinished.txt attached to this
assignment on ELM.

Requirements

1. Your project’s Form1.cs file contains a Stack class after the Form1 class. (You are free to
copy and paste StackUnifinished.txt directly into your code.)

2. The Stack class contains the following public methods:

a. public Stack().

b. public int height().

c. public int top().

d. public void push(int x).

e. public void pop().

1



f. public void reset().

g. public string contentsToString().

3. The contents of the stack are stored in an array named contents, and the height of the stack
is stored in a variable named ht. These two fields are marked as private. If the height of the
stack is n, the contents of the stack is the first n elements in the array. (The other elements
in the array are inaccessible and can thus be ignored.)

4. The constructor Stack builds an empty stack (of height 0).

5. The top and pop methods throw an exception when the stack is empty (i.e., its height is 0),
and push throws an exception when the stack is full (i.e., its height is MAX).

6. The reset method resets the stack to the empty stack. The method does not directly access
the private fields contents and ht.

7. The contentsToString method builds a string of the form

Stack contents: [a0, a2, . . . , an−1]

where a0, a2, . . . , an−1 is the finite sequence held by the stack (i.e., the first n elements in the
array), a0 is the first element pushed onto the stack, and an−1 is the last element pushed onto
the stack.

8. A graphical user interface (GUI) designed by you tests the Stack class. The user interface
contains controls to enable the user to create an empty stack, to select its height and top
element, to push elements onto and pop elements from the stack, to reset the stack to the
empty stack, and to display the contents of the stack using the contentsToString method.

Remarks

1. It is not a requirement, but if you have time program your user interface to catch the excep-
tions that are thrown by the top, push, and pop methods using a try-catch-finally statement.

2. The Stack class only allows stacks of elements of type int to be constructed. A more
sophisticated stack class would allow stacks of elements of any type to be constructed.

2


