
page 1

ENG 1D04 Lab 1: Introduction to C#, Visual Programming and Event-Driven Architectures Term 1 2009/2010
The purpose of the first lab is to demonstrate how to use the Visual Studio development environment to write a simple GUI (graphical user interface)
application. The lab stresses the idea of an event-driven architecture. The goals of the lab are to understand how to create a simple user interface using the
Visual Studio form designer and to understand the concept of an event as a user action that triggers execution of a named code segment.

Start by logging in.

Find Visual Studio on the Start menu and run it.

When it starts, you want to create a new project. This can be done by clicking on the "new project" icon (far left on the toolbar).

You will see a dialog similar to the following:

page 2

Create a "Windows Application" and name it Lab1.

page 3

Once you click "OK" the following screen will be shown:

page 4

There may be some differences in configuration (such as placement of the tool bars and boxes). A new windows application will start with an empty form
called Form1. This form represents the user interface that will be shown when the application is first run. You can interact with it to change its appearance.

First, change its size to be less tall. You can do this by dragging the handle on the
bottom edge of the window (see the next screen capture on the following page).

page 5

In order for an application to be useful it will need to have widgets for the user to interact with. Widgets are items like buttons, scrollbars icons and text entry
boxes. In order to add widgets to the application, the "Toolbox" window must be visible. If there is "Toolbox" item to the left of the display hovering the
mouse pointer over it should make the toolbox visible. You can then prevent it from auto-hiding by clicking on the "pin" icon. If you cannot find the toolbox
at all, you can show it by selecting "Toolbox" from under the "View" menu.

The toolbox has a
number of categories
inside of it. All of the
widgets used in this lab
are under the "Common
Controls" category.
Click the "+" icon beside
the category to view its
contents.

Select "Button" from
under "Common
Controls" and then click
on the bottom left of the
form to add a button.
The button will be
created with the name
"button1" and the default
shape and size. You can
create buttons with a
different shape and size
by dragging an outline
instead of just clicking.

page 6

Select "Button" again and this time drag the outline of the second button. After placing buttons on the form you can resize them by dragging on one of the

handles around their border. You can also move them by dragging on the button itself. Your buttons should be placed approximately as shown below.

page 7

In addition to adding the buttons, add a TextBox. The "TextBox" widget can be found further down under "Common Controls" (depending on the size of the
screen you may have to scroll down to find it). Add a TextBox to the form as shown.

Every widget that is part of
the user interface has
properties. These properties
can be changed during the
design of the application and
many of them can be
changed at runtime by the
program itself. One property
that cannot be changed at
runtime is the "(Name)"
property. This is the name by
which the widget is internally
known. This name is not seen
by the user, but will be used
by you to refer to the widget
in your program code.

The properties of a widget can
be modified using the
"Properties" window near the
bottom right of the Visual
Studio UI (user interface). If
the properties window is not
shown then you can cause it to
be shown by selecting the
"Properties Window" item on
the view menu. There are
usually a lot of properties so
you'll have to scroll to find
them. It may help to resize the
properties window to be larger
by dragging its top edge.

page 8

When modifying
properties, the
widget that is
currently selected in
the form layout
editor (the one with
the border drawn
around it) is the
widget that you're
modifying the
properties of.

Select the first button
that we created. In the
properties list scroll to
the top to find the
(Name) property.
Change the button to be
named "clickbutton".

page 9

The basis of event-driven GUI programming is that you write small pieces of code that are executed in response to events caused by the user. When an event
occurs on a widget you can invoke code (an event handler) to perform a specific task.

In addition to its list of properties, each widget in the user interface has a number of events that it can invoke. These events are invoked in response to user

Scroll further down
the properties list to
the "Text" property.
This is the text that is
displayed on the
widget. Set this to
read "Click Me".
Notice that the
button's appearance in
the user interface has
now changed.

Experiment with
some other
properties like font
size and colour.
Get a feel for the
user interface of
the form designer.

For the second button,
change its "(Name)"
attribute to
"mouseoverbutton"
and its "Text" to "Roll
The Mouse Over" or
something similar.

Change the name of
the TextBox to be
"textbox" but leave its
"Text" empty.

page 10

action. For example, if the user clicks on a button, the "click" event occurs. The list of events available for each widget is available in the properties
window. Near the top of the properties window there will be a lightning bolt icon. If you click this icon the properties window will switch from displaying
the properties of a widget to the events that that widget is capable of generating.

To create an event handler for a
widget, first select the widget
from the form designer then
double click on the event in the
event list. For example, to
create a "Click" event handler
for the button that says "Click
Me", first select the button,
then from the events list, find
the "Click" event and double
click on it. At this point, the
user interface will change. A
new view will open – the code
view. This contains the code of
your program expressed as a
series of event handlers.

A new event handler will have
just been created called
"clickbutton_Click". The name
of the event handler reflects the
widget on which the event has
occurred (clickbutton) and the
name of the event (Click).

The event handler has a body
that begins with { and ends
with }. Between these brackets
are where you will put
statements of program code
that will be executed when the
given event occurs.

 Earlier we said that some properties of widgets can be modified at run time. We're going to do exactly this. Write the indicated line of code inside the
body of the clickbutton_Clicked event handler: Remember the semicolon! Now, when the "Click Me" button is clicked on, this code will run.

page 11

There is a green "play" button in the UI to test the program. If you click this now then the program should compile and run. If there is an error, ask a TA for
help. If everything works out then you should see your application on the screen. You can click the "Click Me" button to run your code to modify the content
of the textbox.

page 12

Close the program and return to the development environment.

Now, return to the form designer. Create a third button with a label of "Reset". When this button is clicked, the textbox should be returned to its original
empty state. Write the code required to do this and demonstrate your resulting application to a TA.

When you created the
event handler, Visual
Studio automatically
switched you to the
code view of your
program. You can get
back to the user
interface design view
by clicking the
"Form1.cs [Design]"
tab at the top of the
code area. Make sure
that the form designer
is visible again (i.e.
click the "[Design]"
tab). Now, similar to
the steps above, create
an event handler for
the second button.
This time, use the
MouseEnter event
(which will occur
when the mouse
cursor enters the area
of the button). Similar
to what we did last
time add code to this
event handler.
You should be able to
compile and run the
program again to see
the result.

page 13

Save the project by choosing “Save All” from the file menu.

NOTES: 1) If you choose any of the other “Save” options you will not save all the relevant components of the project. So – it is important that you

choose “Save All”.
 2) The projects are stored in folders and each project consists of a number of folders and files. The default location for the project

folders is …\My Documents\Visual Studio 2005\Projects\
 3) In order to copy a project (especially to submit it for an assignment) you should zip the folder (top level under …\Projects\) by right-

clicking on the folder and selecting “Compressed Folder” from the menu.

Assignments are submitted through ELM. You may need to submit multiple files for an assignment. Each file has to be uploaded, and only after all files
have been uploaded, press the submit button.

For practice:

1. Save your current project in a zip file called Lab1_Test.
2. Copy Lab1_Test.zip to the desktop.
3. Double click LAB1_Test.zip so that the files are extracted, leaving the project folder on the desktop.
4. Double click on the project folder.
5. Double click the file ending in .sln (the solution file). This will run Visual C# and open your project. If it does not work you did something wrong in

saving the project, or zipping the project, or extracting the project files. Work out what went wrong and correct it. YOU MUST BE PROFICIENT
AT THIS TO SUBMIT YOUR ASSIGNMENTS IN THE FUTURE!

Next lab will end with you submitting the project you create during that lab. After that (sometime in the following week) you will receive feedback from a
TA as to whether your submission included all the necessary files. This will be important when you submit your “real” assignments.

