

This sheet is to be returned at the conclusion of the lab session.

Student Name: _____

Student Number: _____

ENG 1D04, Lab 7, Marked Assignment 3, Methods, Loops, and Arrays, Friday

This assignment has to be submitted via ELM before 2:10 pm. **Assignments will not be accepted after this time.** Please remember to submit your work early and resubmit often. **You should not wait until the end of the lab to start submitting.** You must do the assignment on your own. Conversations between students will not be permitted. You cannot bring reference material into the lab or access information through the Internet. You may use the Visual C# help, Notepad, and the Calculator program.

Background

Let \mathbf{R} be the set of real numbers, $f : \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function that maps real numbers to real numbers, and $[a, b]$ be a closed interval of real numbers (i.e., a set $\{x \in \mathbf{R} \mid a \leq x \leq b\}$). The function f is *increasing* on the closed interval $[a, b]$ if $f(x_1) \leq f(x_2)$ whenever x_1 and x_2 points in the closed interval such $x_1 \leq x_2$.

Overview

Assume the function f is specified by the equation

$$f(x) = x^2 - 1.$$

Your program will check whether this function is increasing on a given closed interval $[x_0, x_{19}]$. The closed interval will be represented by an evenly spaced, increasing finite sequence $[x_0, \dots, x_{19}]$ of 20 sample points.

Design, implement and test the application described in the requirements below. Name the application

*MacID*_*StudentNumber*_*LabSection*_*Lab7*

where *MacID*, *StudentNumber*, and *LabSection* are your MacID, student number, and lab section (written as *Lxy*), respectively. When done, compress the project and similarly name the zip file

*MacID*_*StudentNumber*_*LabSection*_*Lab7*.zip

Details of what you must submit are specified below.

Requirements

1. A method with the heading `double f(double x)` that computes the function f specified above.
2. A graphical user interface (GUI) consisting of a form with the controls described below. The text `Check the Increasing Property` is at the top of the form. (The placement of the controls is your decision.)
3. One input label box with the label `Left Point =`, followed by a text box to accept the left point x_0 of the closed interval.

4. One input label box with the label **Right Point =**, followed by a text box to accept the right point x_{19} of the closed interval.
5. An output label box with label **Result** to show the result of checking whether the function f is increasing on the closed interval.
6. A **Build Input Array** button that when clicked (1) creates an array of type `double []` of length 20 that holds the values x_0, \dots, x_{19} and (2) displays the values of the array in a message box with one value per line. The x_i are evenly spaced from x_0 to x_{19} (i.e., the distance between x_i and x_{i+1} should be the same for all i with $0 \leq i \leq 18$). Note: The user only inputs x_0 and x_{19} ; the other x_i are computed by your program.
7. A **Build Output Array** button that when clicked (1) creates an array of type `double []` of length 20 that holds the values $f(x_0), \dots, f(x_{19})$ and (2) displays the values of the array in a message box with one value per line.
8. A **Check Property** button that when clicked replaces the label **Result** by **Likely is Increasing** if the array of outputs indicates that f increases on $[x_0, x_{19}]$. Otherwise the output label **Result** is replaced by **Definitely is not Increasing**.
9. A **Clear** button that when clicked causes the input text boxes to be cleared of their values. It also restores the output label box back to the original value of **Result**.
10. When the application starts, the two input text boxes are empty.

Design

In your project folder include a separate text document (using Notepad) with the file name `Name_LabNumber_Lab7.txt` where *Name* is your name and *LabNumber* is your lab section. The report will answer two questions, one related to design and the other related to testing. The testing question is given below. The design question is:

What part of your program would have to be modified to check whether f is increasing or decreasing on a given interval?

Implementation in Visual C#

Implement the requirements listed above.

Testing

In the `Name_LabNumber_Lab7.txt` file, answer the following testing question:

Some closed intervals on which f is not increasing nor decreasing should be tested. Give an example of such a closed interval.

Side Remark

If f is a differential function, then whether f is increasing in a closed interval can be determined by analyzing the behavior of the derivative of f in the closed interval.