
Objects and Classes
Continued

Engineering 1D04, Teaching
Session 10

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

Recap: HighScores Example

txtName1 txtName2

txtScore2txtScore1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

recap: HighScores Example
public class HighScore
{

private class hsRecord
{

public string name;
public int score;

}

private const int maxElements = 10;
private hsRecord[] hsArray = new hsRecord[maxElements];
private int length;

public bool add(string newName, int newScore)
{

. . .
}

public void show()
{

. . .
}

}

no room to show this here

no room to show this here

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

recap: HighScores

 What about including a title for the name
of the game at the time of instantiation?

 In general it is useful to be able to include
initial processing for an object at the time
of its instantiation.

 This is done through a constructor.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

Constructors

 A constructor is simply a method that is
executed automatically when the class is
instantiated in an object.

 The name of the constructor method is
exactly the same as the name of the class.

 The constructor method may also include
parameters.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

A Constructor for HighScores

 Consider our example. We want the
constructor to include a string parameter
for the title of the game.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

Constructor Example
public class HighScore
{

private class hsRecord
{

public string name;
public int score;

}

const int maxElements = 10;
private hsRecord[] hsArray = new hsRecord[maxElements];
private int length = 0;
private string result;
private string hsTitle;

public HighScore(string title)
{

hsTitle = title;
}
. . .

constructor

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

Constructor Example

 How do we use the constructor?

private void btnStart1_Click(object sender, EventArgs e)
{

hs1 = new HighScore(gpGame1.Text);
display(1, true);
btnStart1.Visible = false;
txtName1.Focus();

}

string parameter

currently set to
“Group One”

instantiate hs1

when we instantiate hs1
the constructor gets
invoked (called)

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

Multiple Classes in a Project

 In reasonably sized projects we typically
need a number of classes, not just one.

 Each class is normally stored in its own
source file.

 Visual Studio makes it easy to set up
source files for classes.

 As an example, let us see how we can set
up a source file for the class HighScore.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

Source Files for Classes

highlight and
then right click

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

Source Files for Classes

choose add

and then
class

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

Source Files for Classes

type the name you want for the class

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

Source Files for Classes

the system sets up the
stub for the class

note the
HighScore
class source
file has been
added

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

Another Example

 Let’s try another example
 Create a class that manages a suit of

cards
 We need to identify the suit (spades, etc)
 We want to “deal” cards from the suit in

random order
 We need to be able to go back to the initial

settings
 We also need to be able to access the name

of the suit - “Spades”, “Hearts” etc.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

Suit of Cards

data structure in the
class that stores the
required info

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

More Cards
 private int numCardsLeft;
 private string name;

 private Random rand;
 private Random start = new Random();

 // Constructor - and gets name of suit and seed for random #
 public Suit(string s, int seed)
 {
 int r;
 name = s;
 r = start.Next(seed);
 rand = new Random(r);
 status[0] = 0;
 numCardsLeft = MAX;
 }

class variables

lots of work to make it
generate different numbers
for each instance

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

More Cards
 public string deal()
 {
 string card;
 int i, c, n;

 if (numCardsLeft == 0) return null;
 else
 {
 n = rand.Next(1,numCardsLeft+1);
 //Find which card
 c = 0;
 for (i = 1; i <= n;)
 {
 c++;
 if (status[c] == 0) i++;
 }
 status[c] = 1;
 status[0]++;
 numCardsLeft--;

generates a number
in the range 1 through
numCardsLeft

don’t count cards where status
is 1

mark it as “used”
increase #cards used
decrease #cards left

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

More Cards

 if (c == 1) card = "Ace";
 else if (c <= 10) card = Convert.ToString(c);
 else if (c == 11) card = "Jack";
 else if (c == 12) card = "Queen";
 else card = "King";
 }
 return card;
 }

get string value of current card

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

More Cards

 public void restore()
 {
 for (int i = 0; i <= MAX; i++)
 status[i] = 0;
 numCardsLeft = MAX;
 }

gets everything set back to its original state

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

Using the Class

Each of these controlled by the class we made

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

Using the Class

 So - how do we use the class to create the
4 objects we need?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

More Cards

 public partial class Form1 : Form
 {
 Suit spades = new Suit("Spades", 200);
 Suit hearts = new Suit("Hearts", 300);
 Suit clubs = new Suit("Clubs", 400);
 Suit diamonds = new Suit("Diamonds", 500);

Declare 4 objects.

Note the use of the constructor to set the suit name and a
seed for the random number generator.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

More Cards

 private void btnNextCard_Click(object sender, EventArgs e)
 {
 string s, s1, s2, s3, s4;
 s1 = rtbSpades.Text;
 s2 = rtbHearts.Text;
 s3 = rtbClubs.Text;
 s4 = rtbDiamonds.Text;
 s = spades.deal();
 if (s != null)
 {
 if (s1 != "") s1 += ”\n";
 s1 += s;
 btnStartAgain.Visible = true;
 }
 s = hearts.deal();
 if (s != null)
 {
 if (s2 != "") s2 += ”\n";
 s2 += s;
 }

get the current string to add to it

get next card in that suit

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

More Cards

 s = clubs.deal();
 if (s != null)
 {
 if (s3 != "") s3 += ”\n";
 s3 += s;
 }
 s = diamonds.deal();
 if (s != null)
 {
 if (s4 != "") s4 += ”\n";
 s4 += s;
 }
 rtbSpades.Text = s1;
 rtbHearts.Text = s2;
 rtbClubs.Text = s3;
 rtbDiamonds.Text = s4;
 }

replace string with new entry

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

More Cards

 private void btnStartAgain_Click(object sender, EventArgs e)
 {
 btnStartAgain.Visible = false;
 spades.restore();
 rtbSpades.Text = "";
 hearts.restore();
 rtbHearts.Text = "";
 clubs.restore();
 rtbClubs.Text = "";
 diamonds.restore();
 rtbDiamonds.Text = "";
 }

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

A Little More on Classes

 We have just scratched the surface on
object-oriented programming.

 The focus of this course is algorithms and
their implementation in C# - so finer details
on C# are out of scope.

 However, for interest and completeness you
may want to read a little on inheritance and
polymorphism - especially inheritance.

