
Switch, Enumerations,
Exception Handling, Recursion

Engineering 1D04,
Teaching Session 12

Switch Statement

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

Switch Statement

 Consider the if-else construct.
 A typical situation is to capture a keystroke

and use it to determine some aspect of the
application’s behaviour.

 For example:
 ‘B’ or ‘b’ means set bold font
 ‘C’ or ‘c’ means copy selected text
 ‘I’ or ‘i’ means set italics
 ‘M’ or ‘m’ means move the selected text
 ‘Q’ or ‘q’ means quit the application

how do we
implement
this?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

Switch Statement Motivation
if (ch == 'B' || ch == 'b')
{

//code to bold text
}
else if (ch == 'C' || ch == 'c')
{

//code to copy text
}
else if (ch == 'I' || ch == 'i')
{

//code to italicize text
}
else if (ch == 'M' || ch == 'm')
{

//code to move text
}
else if (ch == 'Q' || ch == 'q')
{

//code to quit
}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

Switch Statement Motivation
if (ch == 'B' || ch == 'b')
{

//code to bold text
}
else if (ch == 'C' || ch == 'c')
{

//code to copy text
}
else if (ch == 'I' || ch == 'i')
{

//code to italicize text
}
else if (ch == 'M' || ch == 'm')
{

//code to move text
}
else if (ch == 'Q' || ch == 'q')
{

//code to quit
}

And this can
get cumbersome!

Also, what if you
have many cases
to consider - does
the order of the
else-if clauses
matter?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

The Switch Construct
switch (ch)
{

case 'B':
case 'b':

//code to bold text
break;

case 'C':
case 'c':

//code to copy text
break;

case 'I':
case 'i':

//code to italicize text
break;

. . .
break;

case 'Q':
case 'q':

//code to quit
 break;

}

how do you
think this
works?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

The Switch Construct
switch (ch)
{

case 'B':
case 'b':

//code to bold text
break;

case 'C':
case 'c':

//code to copy text
break;

case 'I':
case 'i':

//code to italicize text
break;

. . .
break;

case 'Q':
case 'q':

//code to quit
break;

}

variable that controls switch
(variable must be “simple” -
integer, character etc)

break - transfers control
outside of the switch
(works in loops also)

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

The Switch Construct
switch (ch)
{

case 'B':
case 'b':

//code to bold text
break;

. . .
break;

case 'Q':
case 'q':

//code to quit
break;

default:
//code to run if no case is entered
break;

}

we can also use
a default case to
cope with the
situation if no case
has been specified
with the current value
of the switch variable

for example, what if
ch = ‘s’?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

The Switch Construct

 Surprisingly, as well as integer, characters
and other sub-range variables, in C#
strings can also be used as the switch
variable.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

The Switch Construct

 The switch/case construct has two main
advantages over if-else-if:
 It produces code that is much clearer to read

and understand
 In situations where we have many cases, the

construct is implemented in a way that results
in equal execution time for each case,
independent of where it is in the construct

 switch/case cannot be used to replace
general if-else constructs, just these simple
“choice” constructs.

Enumerations

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

Enumerations

 In constructing an algorithm we may elect
to work with a variable that takes on a few
specific values.

 For example, say we have an algorithm
that specifies different behaviour for
different days of the week.
 for mon, wed, and thu we have c = c + 20
 for tue and fri we have c = c + 30
 for sat and sun we have c = c + 15

how do we
implement
this?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

Enumerations

 Without enumerations we use integers to
refer to each day of the week - say
 0 ⇒ sun
 1 ⇒ mon
 2 ⇒ tue
 3 ⇒ wed
 4 ⇒ thu
 5 ⇒ fri
 6 ⇒ sat

so
int c, day;
. . .
if (day == 1 || day == 3 ||
 day == 4)

c += 20;
else if (day == 2 || day == 5)

c += 30;
else if (day == 0 || day == 6)

c += 15;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

Enumerations

 It would be a lot more straight forward if we
could use variables of type DayOfWeek.

 This is what enumerations let us do.
 The keyword in C# is enum.
 We can declare an enum as follows

enum DayOfWeek {sun, mon, tue, wed, thu, fri, sat};
DayOfWeek day;
. . .

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

Enumerations

 So, we can use the enumeration as
follows:

enum DayOfWeek {sun, mon, tue, wed, thu, fri, sat};
DayOfWeek day;
int c;
. . .
if (day == DayOfWeek.mon || day == DayOfWeek.wed ||
 day == DayOfWeek.thu)

c += 20;
else if (day == DayOfWeek.tue || day == DayOfWeek.fri)

c += 30;
else if (day == DayOfWeek.sun || day == DayOfWeek.sat)

c += 15;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

Enumerations

 The enum implementation in C# has some
useful properties. We can access the
name of the enum element as a string.

 Example:
enum DayOfWeek {sun, mon, tue, wed, thu, fri, sat};
DayOfWeek day;
int c;
. . .
MessageBox.Show(Convert.ToString(day));

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

Enumerations

 What does this do?
enum DayOfWeek {sun, mon, tue, wed, thu, fri, sat};
DayOfWeek d;
string s;

s = "";
for (d = DayOfWeek.sun; d <= DayOfWeek.sat; d++)

s += d + "\n";
MessageBox.Show(s);

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

Enumerations

 What does this do?
enum DayOfWeek {sun, mon, tue, wed, thu, fri, sat};
DayOfWeek d;
string s;

s = "";
for (d = DayOfWeek.sun; d <= DayOfWeek.sat; d++)

s += d + "\n";
MessageBox.Show(s);

starting value ending value increment value

this works because
d can be converted
to a string - so, as
we saw early on,
string concatenation
does an automatic
string conversion

shows a message
box of the form:

sun
mon
tue
wed
thu
fri
sat

Exception Handling

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

Exception Handling

 Exception handling is a crucial component of
software design.

 An exception is a situation that arises in
which something has “gone wrong”.

 Examples:
 division by 0
 array index out of bounds
 opening a file that does not exist
 converting a string to a number - and the string

does not represent a number

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

Exception Handling

 If we do not “handle” these exceptions,
they will cause run-time errors - commonly
known as “crashes”.

 Handling the exception typically involves
detecting that an exception has occurred,
and then including code that warns the
user about the problem but does not
execute the code that would generate an
error, or uses a default value or takes
some other action to avoid an error.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

Exception Handling

 Example:

 This avoids a crash caused by division by zero.

 Avoids a crash caused by a array out of bounds.

if (a != 0) z = b / a;
else z = 0;

int a[] = new array[max];
if (j >= 0 && j < max)
 z = a[j];
else {
 z = a[0];
 MessageBox.Show("a out of bounds");
}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

Exception Handling

 In older languages we had to handle
exceptions by testing for them and then
having specific code written for each case.

 Modern languages have special
constructs that help us handle exceptions.

 The construct in C# is
try
catch
finally

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

Exception Handling

 When an exception occurs, we say that an
exception has been thrown.

 Exception handlers therefore catch
exceptions that have been thrown.

 We can be specific about the exception that
is caught, or we can catch general
exceptions.

Why do you think it helps to be specific?
(We’ll answer this later)

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

Exception Handling

 Example:
try
{

z = b / a;
}
catch
{

z = 0;
}

potential divide by zero

if there was a division by
zero, an exception is thrown -
and caught in here. This
code then gets executed.

If there is no exception (any kind)
then the code in the catch clause
is not executed at all.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

Exception Handling

 How is this different from the previous
example?
try
{

z = b / a;
}
catch (DivideByZeroException e)
{

z = 0;
}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

Exception Handling

 How is this different from the previous
example?
try
{

z = b / a;
}
catch (DivideByZeroException e)
{

z = 0;
}

This will catch only divide by zero exceptions.
Early one catches any exception.

object of Exception class

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

Exception Handling

 But we can combine catch clauses:
try
{

b = Convert.ToInt32(txtValue.Text);
z = b / a;

}
catch (DivideByZeroException e)
{

z = 0;
MessageBox.Show("Divide by zero");

}
catch (FormatException e)
{

MessageBox.Show("Text must be valid number");
}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 28

Exception Handling

 But we can combine catch clauses:
try
{

b = Convert.ToInt32(txtValue.Text);
z = b / a;

}
catch (DivideByZeroException e)
{

z = 0;
MessageBox.Show("Divide by zero");

}
catch (FormatException e)
{

MessageBox.Show("Text must be valid number");
}

This clause executed if divide by zero

This clause executed if format problem

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

Exception Handling

 We can use the Exception class objects:
try
{

b = Convert.ToInt32(txtValue.Text);
z = b / a;

}
catch (DivideByZeroException e)
{

z = 0;
MessageBox.Show(e.Message);

}
catch (FormatException e)
{

MessageBox.Show(e.Message);
}

try it

(can use any name
here)

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30

Exception Handling

 The finally clause gets executed whatever
happens.

 This is particularly useful for file I/O since
we need to close files after opening and
using them.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

Exception Handling

 How does the try-catch-finally work?
 statements in the try clause are executed
 if no exceptions occur - execution continues

with the code immediately following the final
catch clause (could be a finally clause)

 if an exception occurs - control is transferred
to the applicable catch clause, and then to the
code immediately following the final catch
clause

 if there is no catch clause there must be a
finally clause

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

Exception Handling

 So, there are advantages to using specific
exception classes
 More specific feedback for the user
 We can use built in methods/properties of the

exception classes

Recursion

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

Recursion
 Another approach for iteration
 Most natural approach for some problems
 A recursive function (method) is one that

calls itself
 N! = N*(N-1)*(N-2)*…*2*1
 e.g. 5!=5*4*3*2*1 = 5*4! = 5*4*3! = …
 N! =

 1 if N=0 or N=1
 N*(N-1)! If N>1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

Recursion Continued
 The idea is to reduce the instance of the

problem to the same problem with
“smaller” input

 A recursive function consists of two parts:
 Base case – describes a simple case of the

problem that can be solved in non-recursive
form

 Recursive part – the other cases of the
problem can be reduced (by recursion) to
problems that are closer to the base case

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

Factorial Function

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

int factorial(int n)
{

if ((n==0)||(n==1))
 {
 return 1;
 }
 else
 {
 return n*factorial(n-1);
 }
}

Sum Example

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

//Return the sum of 1 to n
public int sum(int n)
{
 int result;

if (n==1)
 {
 result = 1;
 }
 else
 {
 result = n + sum(n-1);
 }
 return result;
}

How would you write this summation using the
“big sigma” notation?

Advice on Exam Preparation
from your TAs Perspective

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

Questions?
 Data types?
 Expressions?
 Methods?
 Conditional statements?
 Iterative statements, recursion?
 Arrays?
 Object Oriented Programming?
 File I/O?
 Exception Handling?
© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

Concluding Remarks

 Final exam will be multiple choice
 BRING YOUR OWN HB PENCILSBRING YOUR OWN HB PENCILS

 Good luck!
 With your exams
 With second term
 With second year and beyond

 Have a great career!

