Switch, Enumerations,
Exception Handling, Recursion

Engineering 1D04,
Teaching Session 12

Switch Statement

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Switch Statement

= Consider the if-else construct.

= A typical situation is to capture a keystroke
and use it to determine some aspect of the
application’s behaviour.

= For example:
e ‘B’ or ‘b’ means set bold font how do we
e ‘C’ or 'c’ means copy selected text implement
* ‘' or ‘i’ means set italics this?
‘M’ or ‘'m’ means move the selected text
e ‘Q’ or ‘g’ means quit the application

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

Switch Statement Motivation

if (ch == 'B' || ch == 'b')

{

}

else if (ch == 'C' || ch == '¢'")
{

}

else if (ch == 'I' || ch == '1i")
{

}

else if (ch == 'M' || ch == 'm')
{

}

else if (ch == 'Q' || ch == 'q"')
{ .
}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Switch Statement Motivation

else if

else if

else if

else if

(ch

(ch

(ch

(ch

if (ch == 'B'

Il ch == 'b")
'C' || ch ==
'I' || ch ==
'M' || ch ==
'Q" || ch ==

And this can

get cumbersome!

Also, what if

you

have many cases

to consider -

does

the order of the
else-if clauses

matter?

'

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

The Switch Construct

switch (ch)
{
case 'B':
case 'b':
break;
case 'C':
case 'c¢':
break;
case 'I':
case 'i':
break;
break;
case 'Q':
case 'q':
break;
}

how do you
think this
works?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

The Switch Construct

TWltCh (h)«—— variable that controls switch
case 'B': (variable must be “simple” -
case 'b': integer, character etc)

break;
case 'C': $\\\\\\\\\\\\\\\\\
case 'c¢':

break - transfers control

break; outside of the switch
SEEE b (works in loops also)
case 1l :

break;

break;
case 'Q':
case 'q':

break; ZZ::;?f

}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

The Switch Construct

switch (ch)
{

case 'B':
case 'b':

break;
break;

case 'Q':
case 'q':

break;

break; ‘///////////////
default:

we can also use

a default case to
cope with the
situation if no case
has been specified
with the current value
of the switch variable

for example, what if

ch ='s?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

The Switch Construct

= Surprisingly, as well as integer, characters
and other sub-range variables, in C#
strings can also be used as the switch
variable.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

The Switch Construct

= The switch/case construct has two main
advantages over if-else-if:

* |t produces code that is much clearer to read
and understand

* In situations where we have many cases, the
construct is implemented in a way that results
In equal execution time for each case,
independent of where it is in the construct

= swilch/case cannot be used to replace

general if-else constructs, just these simple
“choice” constructs.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

Enumerations

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

10

Enumerations

= |[n constructing an algorithm we may elect
to work with a variable that takes on a few
specific values.

= For example, say we have an algorithm
that specifies different behaviour for
different days of the week.
e for mon, wed, and thu we have c=c + 20
e for tue and fri we have c =c + 30 how do we

Implement
e for sat and sun we havec=c + 15 this?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

Enumerations

= Without enumerations we use integers to
refer to each day of the week - say

e (= SuUn SO
e 1 = Mon int c, day;
2 = tue if (day == 1 || day == 3 ||
e 3 = wed day == 4)
c += 20;
o 4 = thu else if (day == 2 || day ==
] c += 30;
*d = fri else if (day == 0 || day ==
¢ 6 = sat ¢ =13

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Enumerations

* |t would be a lot more straight forward if we
could use variables of type DayOfWeek.

= This iIs what enumerations let us do.
* The keyword in C# is enum.
= \We can declare an enum as follows

enum DayOfWeek {sun, mon, tue, wed, thu, fri, sat};
DayOfWeek day;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

Enumerations

= SO, we can use the enumeration as
follows:

int c;
if (day
day

C =
else if

else if

enum DayOfWeek {sun, mon,
DayOfWeek day;

== DayOfWeek.mon || day
== DayOfWeek. thu)

20;
(day
30;
(day
15;

DayOfWeek. tue

DayOfWeek. sun

tue, wed, thu,

fri, sat};

== DayOfWeek.wed | |

day

day

DayOfWeek.fri)

DayOfWeek. sat)

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

14

Enumerations

= The enum implementation in C# has some
useful properties. We can access the
name of the enum element as a string.

= Example:

enum DayOfWeek {sun, mon, tue, wed, thu,
DayOfWeek day;
int c;

MessageBox.Show (Convert.ToString(day)) ;

fri,

sat};

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

15

Enumerations

= \What does this do?

enum DayOfWeek {sun, mon, tue, wed, thu, fri, sat};
DayOfWeek d;

string s;

- I
S = ’

for (d = DayOfWeek.sun; d <= DayOfWeek.sat; d++)
s +=d + "\n";

MessageBox.Show (s) ; 44::;77

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

Enumerations

: shows a message Vtvr?:
» What does this do? vox of the form: I

mon
tue

sat

DayOfWeek d;

string s; :
+hg starting value

S — 1] "; /

s += d + "\n";

MessageBog?SQS?(s);

enum DayOfWeek {sun, mon, tue, wed, thu, fri, sat};

for (d = DayOfWeek.sun; d <= DayOfWeek.sat; d++)

ending value iIncrement value

. \

this works because

d can be converted [

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

to a string - so, as
we saw early on,
string concatenation
does an automatic
string conversion

17

Exception Handling

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

18

Exception Handling

» Exception handling is a crucial component of
software design.

= An exception is a situation that arises in
which something has “gone wrong”.

= Examples:
e division by O
e array index out of bounds
* opening a file that does not exist

* converting a string to a number - and the string
does not represent a number

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

Exception Handling

= [f we do not “handle” these exceptions,
they will cause run-time errors - commonly
known as “crashes”.

= Handling the exception typically involves
detecting that an exception has occurred,
and then including code that warns the
user about the problem but does not
execute the code that would generate an
error, or uses a default value or takes
some other action to avoid an error.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Exception Handling

= Example:

if (a '= 0) z =Db / a;
else z = 0;

* This avoids a crash caused by division by zero.

int a[] = new array[max];
if (jJ >= 0 && j < max)
z = a[jl;
else {
z = a[0];
MessageBox.Show("a out of bounds") ;

} —
* Avoids a crash caused by a array out of bounds.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

Exception Handling

* |[n older languages we had to handle
exceptions by testing for them and then
having specific code written for each case.

* Modern languages have special
constructs that help us handle exceptions.

= The construct in C# is
try
catch
finally

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Exception Handling

* \When an exception occurs, we say that an
exception has been thrown.

= Exception handlers therefore catch
exceptions that have been thrown.

= We can be specific about the exception that
IS caught, or we can catch general
exceptions.

Why do you think it helps to be specific?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Exception Handling

= Example:
try
{ z=b /a; *
cateh

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

/

| potential divide by zero

if there was a division by
zero, an exception is thrown -
and caught in here. This
code then gets executed.

If there is no exception (any kind)

then the code in the catch clause
IS not executed at all.

24

Exception Handling

= How is this different from the previous
example?

try
{

z =Db / a;
}

catch (DivideByZeroException e)

{

z = 0;

}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

25

Exception Handling

= How is this different from the previous
example?

This will catch only divide by zero exceptions.
Early one catches any exception.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

try
{ object of Exception class
z =Db / a;
}
catch (DivideByZeroException e)
{
z =0;
} Z

26

Exception Handling

= But we can combine catch clauses:

try
{

b
Z

Convert.TolInt32 (txtValue.Text) ;
b / a;

}

catch (DivideByZeroException e)

{
z = 0;
MessageBox.Show("Divide by zero");

}

catch (FormatException e)

{

MessageBox.Show ("Text must be valid number") ;
} Z

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

Exception Handling

= But we can combine catch clauses:

try

{
b

A

Convert.TolInt32 (txtValue.Text) ;
b / a;

}

catch (DivideByZeroException e)

z = 0;
MessageBox.Show("Divide by zero");

}

catch (FormatException e)

MessageBox.Show ("Text must be valid number") ;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

{ This clause executed if divide by zero

{ This clause executed if format problem

| '

28

Exception Handling

= \We can use the Exception class objects:

try

{
b = Convert.ToInt32 (txtValue.Text) ;
z =Db / a;

}

catch (DivideByZeroException e)

{ ™ (can use any name
z = 0; here)

MessageBox.Show (e.Message) ;
}
catch (FormatException e
{

MessageBox.Show (e .Message) ;

} try it 7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

Exception Handling

* The finally clause gets executed whatever
happens.

» This is particularly useful for file /O since
we need to close files after opening and
using them.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Exception Handling

= How does the try-catch-finally work"?
» statements in the try clause are executed

* if no exceptions occur - execution continues
with the code immediately following the final
catch clause (could be a finally clause)

e if an exception occurs - control is transferred

to the applicable catch clause, and then to the

code immediately following the final catch
clause

e if there is no cafch clause there must be a
finally clause

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

31

Exception Handling

» S0, there are advantages to using specific
exception classes

* More specific feedback for the user

* \We can use built in methods/properties of the
exception classes

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

Recursion

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

33

Recursion

= Another approach for iteration
= Most natural approach for some problems

= A recursive function (method) is one that
calls itself

= NI = N*(N-1)*(N-2)*...*2*1
" e.g. 5!1=5"4%3"2*1 = 541 = 5*4*3! = ...
s NI =

e 1if N=0 or N=1

e N*(N-1)! If N>1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Recursion Continued

» The idea is to reduce the instance of the
problem to the same problem with
“smaller” input

= A recursive function consists of two parts:

 Base case — describes a simple case of the
problem that can be solved in non-recursive
form

e Recursive part — the other cases of the
problem can be reduced (by recursion) to
problems that are closer to the base case

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Factorial Function

int factorial (int n)
{
if ((n==0) || (n==1))
{
return 1;
}
else
{
return n*factorial (n-1) ;
}
}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

36

Sum Example

//Return the sum of 1 to n
public int sum(int n)

{

int result;

if (n==1)
{
result = 1;
}
else

{

result = n + sum(n-1);

}

return result;

How would you write this summation using the
“big sigma” notation?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

} =

37

Advice on Exam Preparation
from your TAs Perspective

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Questions?

= Data types”?

= Expressions?

= Methods?

= Conditional statements?

= [terative statements, recursion?
= Arrays?

= Object Oriented Programming?
= File I/O?

aa

Concluding Remarks

* Final exam will be multiple choice
* BRING YOUR OWN HB PENCILS

= Good luck!

= With your exams
= With second term
= With second year and beyond

= Have a great career!

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

40

