
Computers, Variables and
Types

Engineering 1D04, Teaching
Session 2

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

Typical Computer

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

An Abstract View of Computers

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

An Abstract View of Computers

Programming Languages
 Algorithms are communicated to the

computer using a programming language
 Evolution of programming languages:

 Machine language: 01000111000110100
 Assembly code: mov, and, push, add, jmp, etc
 High level languages: FORTRAN, Pascal,

Basic, C, C++, Java, Visual C#, Visual Basic,
Haskell, Ocaml, …

 Conversion of high level language to
machine code is via a compiler

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

Memory “boxes”

Abstract View of Memory

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

Introduction to Variables

 When we create algorithms that solve
problems, we typically model the problem
we are solving - we create an abstraction
of the real problem and then use
properties of that abstract model to get a
solution that (hopefully) solves the original
problem.

 We often create mathematical variables to
represent physical entities.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

Mathematical Variables
velocity of car is v
starts at velocity v0
t represents time
acceleration of car is a

t

v = v0 + at

so, at this point in time, what is the car’s velocity?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

Introduction to Program Variables

 Computer programs implement algorithms
and we need to calculate values that
represent physical entities or simply data
items. We therefore need to manipulate
and store data.

 A program variable is a named memory
location that can be used to store data.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

myVariable

myStringBirthday
65

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

Introduction to Program Variables

 Variables can have different forms
depending on the type of data you wish to
store in them.
 Int variables store integer numbers.
 Float variables (double) store real numbers.
 Char variables store a single character.
 String variables store text (multiple

characters).
 Bool variables store true or false.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

int myInteger;
double myDouble;

Introduction to Program Variables

 Variables must be declared before they
can be used.

 Declaring a variable assigns a name to a
previously unused memory location.

program segments will be
shown in these “page” templates

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

int myInteger;
double myDouble;

myInteger

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

myInteger

int myInteger;
double myDouble;

myDouble

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

int myInteger, myOtherInteger, myThirdInt;
double myDouble;

Introduction to Program Variables

 Multiple variables of the same type can be
declared at the same time by separating
them with a comma.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

 Variables can be assigned a value with
the assignment (=) operator.

myInteger = 5;
myDouble = 4.5;
myInteger = 25;

Variable Constant / Literal

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

myInteger

myDouble

myInteger = 5;
myDouble = 4.5;
myInteger = 25;se

qu
en

ce

5

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

myInteger

myDouble

se
qu

en
ce

5

myInteger = 5;
myDouble = 4.5;
myInteger = 25;

4.5

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

myInteger

myDouble

se
qu

en
ce

4.5

myInteger = 5;
myDouble = 4.5;
myInteger = 25;

25

The value at any location can
change from time to time.

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

Introduction to Program Variables

 Remember the definition of a variable:
 A named memory location used to store data.

 The assignment operator (=) can be thought
of as a left arrow, placing a value into a
memory location.
 myInteger ← 5; (put 5 in the myInteger box)

 But we don’t have ← on our keyboard, so we
use the equals sign instead.
 myInteger = 5;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

Introduction to Program Variables

 In our example, myInteger holds different
values at different times.
Sequence is important here!
The current contents of a variable is what was

most recently assigned to it.
 Assignment always occurs from right to left

myInteger = 5;
• Storing 5 into “myInteger” makes sense.

 5 = myInteger;
• Storing “myInteger” into the value of 5 makes no sense.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

myInteger = myOtherInteger;

What does this do?

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

myInteger = myOtherInteger;

Introduction to Program Variables

myInteger

123
123

myOtherInteger

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

myInteger = 20;

Introduction to Program Variables

 When not being assigned to, a variable
stands in for the value that it contains.

 In this case, if myOtherInteger contained
20 then this statement would be
equivalent to the following:

myInteger = myOtherInteger;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

myInteger = myInteger + 5;

What does this do?

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

Introduction to Program Variables

 This adds 5 to the current contents of
myInteger and stores the result back into
myInteger.
 If myInteger used to contain 20, it now contains

25.
 Repeating this statement will result in

repeatedly adding 5 to myInteger.

myInteger = myInteger + 5;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

double a, b, c, d, e, f, g;

a = 4; b = 25; c = 30;
d = 60; e = 10;

f = b;
f = f + c;
f = f + d;
f = f + e;
g = f / a;

What does
this
program do?

Example Program 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

Example Program 1

 It’s not intuitively obvious what this
program does.

 It can be improved easily by giving the
variables useful names.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 28

double b, c, d, e, sum, average;
int numTerms;

numTerms = 4;
b = 25; c = 30; d = 60; e = 10;

sum = b;
sum = sum + c;
sum = sum + d;
sum = sum + e;
average = sum / numTerms;

Example Program 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

Program Variables

 There are a number of variable naming
conventions.

 In 1D04, the following convention will be
adopted:
 All first words are lowercase.
 Subsequent words have their first letter

capitalized.
• fred, theVariable, bobLovesMe

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30

Program Variables

 Variables cannot start with a number.

 Extremely short or exceptionally long
variable names can be hard to work with.
Use an appropriate length.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

Program Variables

 There is still room for improvement in the
code that calculates the average. What can
you do to make it “better”?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

Program Variables

 There is still room for improvement in the
code that calculates the average. In this
case, we can simply add the values of b, c, d
and e together without doing it sequentially.

 While we do this we need to bear in mind
that:
 Rules for the mathematical order of operations

apply to operations on variables.
 We should use brackets anywhere our intention

might be unclear.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

double b, c, d, e, average;
int numTerms;

b = 25; c = 30; d = 60; e = 10;
numTerms = 4;

average = (b+c+d+e) / numTerms;

“Better” Version

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

Program Variables

 Lastly, variables can be initialized when
they are declared.

 Does that mean those variables will
behave like constants?

 No
 Their values can still be changed later in the

program.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

double b = 25, c = 30, d = 60,
 e = 10, average;

int numTerms = 4;

average = (b+c+d+e) / numTerms;

Initialized Version

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

Program Variables

 Notice the use of quotes in characters and
strings.

 The type of box that a literal is given is
defined by its quotes.

 Single quotes get a character box. ‘x’ ‘#’
 Double quotes get a string box. “x” “1x3@”
 Double quotes are not single quotes typed

twice.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

char name1, name2, name3;
string s1, s2;

name1 = 'B';
name2 = 'abc';
name3 = "abc";

s1 = "B";
s2 = "abc";

 Examples:

66

name1 name2

works fine

s1

s2

box not big enough

66 

97 98 99 

name3

box not the right kind

works fine

works fine

Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

 Booleans can contain only the values true
or false.

 They will become more useful as the
course progresses.

Program Variables

Types

 The type of a variable provides very
important information to the programmer
and to the compiler

 The number of students in a tutorial is an
integer, not a real number or double – you
cannot have 23.45 students in a class!

 Some operations are only valid over
certain types

 Type conversions when mixing types
© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

 Remember “Click Me” from lab 1?

void …(…)
{
 textBox1.Text = "You Clicked 'Click Me'";
}

Type Conversion

You Clicked 'Click Me'

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

void …(…)
{
 int myInteger = 10;
 textBox1.Text = myInteger;
}

Type Conversion

 What happens when we run the method
with an integer?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

Type Conversion

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 43

Type Conversion

 The variables are in different size/kind of
boxes.

 We need to do an explicit conversion from
integer to string.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

void …(…)
{
 int myInteger = 10;
 textBox1.Text = Convert.ToString(myInteger);
}

Example Program 2

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

Type Conversion

 The Convert methods are found in the
System library.

 In order to use them as demonstrated in
this tutorial the following line must be at
the beginning of your source file:
 using System;

 Visual Studio does this by default for you.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 46

Example Program 3

 It’s quite natural to want a numerical type
along with a descriptive string in a textbox.

 How do we do that?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 47

private void ClickMe_Click(object sender,
 EventArgs e)
{
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is ??";
}

We want the value of sum!

Example Program 3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 48

private void ClickMe_Click(object sender,
 EventArgs e)
{
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is sum";
}

Example Program 3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 49

private void button1_Click(object sender,
 EventArgs e){
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is sum";
}

Example Program 3

Click Me

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 50

Example Program 3

 We need to convert sum into a string and
concatenate it with “The Answer to …”.

 Convert.ToString(intValue) produces a
string consisting of characters
representing the value of intValue.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 51

private void ClickMe_Click(object sender,
 EventArgs e)
{
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is " +

 Convert.ToString(sum);
}

Example Program 3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 52

private void button1_Click(object sender,
 EventArgs e){
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is " +

 Convert.ToString(sum);
}

Example Program 3

Click Me

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 53

Example Program 3

 Actually, this is a special case! We did not
need to convert the integer to a string in
this particular case.

 Why? Because the concatenation
operator (+) implicitly converts numerical
values to strings if necessary.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 54

private void ClickMe_Click(object sender,
 EventArgs e)
{
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is "+ sum;
}

Example Program 3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 55

Concatenation

 Multiple things can be concatenated at
once.

 All must be either strings or implicitly
convertible to strings by the concatenation
operator.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 56

string myVeryLongString;
int myAge = 22;
string myBirthday = "January 3, 1984";

myVeryLongString = " I was born on "
+ myBirthday + ". I am now " + myAge;

Example Program 4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 57

string myVeryLongString;
int myAge = 22;
string myBirthday = "January 3, 1984";

myVeryLongString = " I was born on "
+ myBirthday + ". I am now " + myAge;

String

Variable of type string
String Integer which is implicitly

convertible to a string.

Example Program 4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 58

Inputting Data

 Suppose we want to change the inputs used to
calculate the answer to Life, the Universe, and
Everything.

 We could read two numbers from two textboxes,
add them, and then write the answer to a textbox.

Click Me

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 59

private void ClickMe_Click(object sender,
 EventArgs e)

{
 int sum;

 sum = inputBox1.Text + inputBox2.Text;
 outputBox.Text = "The Answer to Life, The Universe,

and Everything is " + sum;
 }

Example Program 5

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 60

Inputting Data

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 61

Inputting Data

 Textboxes deal only with Strings.

 We need our inputs to be integers.

 An explicit conversion is required.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 62

private void ClickMe_Click(object sender,
 EventArgs e)

{
 int sum;

 sum = Convert.ToInt32(inputBox1.Text)
 + Convert.ToInt32(inputBox2.Text);

 outputBox.Text = "The Answer to Life, The Universe,

and Everything is " + sum;
 }

Example Program 6

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 63

private void ClickMe_Click(object sender,
 EventArgs e)

{
 int sum;

 sum = Convert.ToInt32(inputBox1.Text)
 + Convert.ToInt32(inputBox2.Text);

 outputBox.Text = "The Answer to Life, The Universe,

and Everything is " + sum;
 }

Example Program 6

Click Me

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 64

Points to Ponder

 Program variables
 Variable typing
 Type conversions

