
Computers, Variables and
Types

Engineering 1D04, Teaching
Session 2

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

Typical Computer

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

An Abstract View of Computers

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

An Abstract View of Computers

Programming Languages
 Algorithms are communicated to the

computer using a programming language
 Evolution of programming languages:

 Machine language: 01000111000110100
 Assembly code: mov, and, push, add, jmp, etc
 High level languages: FORTRAN, Pascal,

Basic, C, C++, Java, Visual C#, Visual Basic,
Haskell, Ocaml, …

 Conversion of high level language to
machine code is via a compiler

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

Memory “boxes”

Abstract View of Memory

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

Introduction to Variables

 When we create algorithms that solve
problems, we typically model the problem
we are solving - we create an abstraction
of the real problem and then use
properties of that abstract model to get a
solution that (hopefully) solves the original
problem.

 We often create mathematical variables to
represent physical entities.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

Mathematical Variables
velocity of car is v
starts at velocity v0
t represents time
acceleration of car is a

t

v = v0 + at

so, at this point in time, what is the car’s velocity?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

Introduction to Program Variables

 Computer programs implement algorithms
and we need to calculate values that
represent physical entities or simply data
items. We therefore need to manipulate
and store data.

 A program variable is a named memory
location that can be used to store data.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

myVariable

myStringBirthday
65

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

Introduction to Program Variables

 Variables can have different forms
depending on the type of data you wish to
store in them.
 Int variables store integer numbers.
 Float variables (double) store real numbers.
 Char variables store a single character.
 String variables store text (multiple

characters).
 Bool variables store true or false.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

int myInteger;
double myDouble;

Introduction to Program Variables

 Variables must be declared before they
can be used.

 Declaring a variable assigns a name to a
previously unused memory location.

program segments will be
shown in these “page” templates

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

int myInteger;
double myDouble;

myInteger

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

myInteger

int myInteger;
double myDouble;

myDouble

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

int myInteger, myOtherInteger, myThirdInt;
double myDouble;

Introduction to Program Variables

 Multiple variables of the same type can be
declared at the same time by separating
them with a comma.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

 Variables can be assigned a value with
the assignment (=) operator.

myInteger = 5;
myDouble = 4.5;
myInteger = 25;

Variable Constant / Literal

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

myInteger

myDouble

myInteger = 5;
myDouble = 4.5;
myInteger = 25;se

qu
en

ce

5

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

myInteger

myDouble

se
qu

en
ce

5

myInteger = 5;
myDouble = 4.5;
myInteger = 25;

4.5

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

myInteger

myDouble

se
qu

en
ce

4.5

myInteger = 5;
myDouble = 4.5;
myInteger = 25;

25

The value at any location can
change from time to time.

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

Introduction to Program Variables

 Remember the definition of a variable:
 A named memory location used to store data.

 The assignment operator (=) can be thought
of as a left arrow, placing a value into a
memory location.
 myInteger ← 5; (put 5 in the myInteger box)

 But we don’t have ← on our keyboard, so we
use the equals sign instead.
 myInteger = 5;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

Introduction to Program Variables

 In our example, myInteger holds different
values at different times.
Sequence is important here!
The current contents of a variable is what was

most recently assigned to it.
 Assignment always occurs from right to left

myInteger = 5;
• Storing 5 into “myInteger” makes sense.

 5 = myInteger;
• Storing “myInteger” into the value of 5 makes no sense.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

myInteger = myOtherInteger;

What does this do?

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

myInteger = myOtherInteger;

Introduction to Program Variables

myInteger

123
123

myOtherInteger

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

myInteger = 20;

Introduction to Program Variables

 When not being assigned to, a variable
stands in for the value that it contains.

 In this case, if myOtherInteger contained
20 then this statement would be
equivalent to the following:

myInteger = myOtherInteger;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

myInteger = myInteger + 5;

What does this do?

Introduction to Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

Introduction to Program Variables

 This adds 5 to the current contents of
myInteger and stores the result back into
myInteger.
 If myInteger used to contain 20, it now contains

25.
 Repeating this statement will result in

repeatedly adding 5 to myInteger.

myInteger = myInteger + 5;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

double a, b, c, d, e, f, g;

a = 4; b = 25; c = 30;
d = 60; e = 10;

f = b;
f = f + c;
f = f + d;
f = f + e;
g = f / a;

What does
this
program do?

Example Program 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

Example Program 1

 It’s not intuitively obvious what this
program does.

 It can be improved easily by giving the
variables useful names.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 28

double b, c, d, e, sum, average;
int numTerms;

numTerms = 4;
b = 25; c = 30; d = 60; e = 10;

sum = b;
sum = sum + c;
sum = sum + d;
sum = sum + e;
average = sum / numTerms;

Example Program 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

Program Variables

 There are a number of variable naming
conventions.

 In 1D04, the following convention will be
adopted:
 All first words are lowercase.
 Subsequent words have their first letter

capitalized.
• fred, theVariable, bobLovesMe

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30

Program Variables

 Variables cannot start with a number.

 Extremely short or exceptionally long
variable names can be hard to work with.
Use an appropriate length.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

Program Variables

 There is still room for improvement in the
code that calculates the average. What can
you do to make it “better”?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

Program Variables

 There is still room for improvement in the
code that calculates the average. In this
case, we can simply add the values of b, c, d
and e together without doing it sequentially.

 While we do this we need to bear in mind
that:
 Rules for the mathematical order of operations

apply to operations on variables.
 We should use brackets anywhere our intention

might be unclear.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

double b, c, d, e, average;
int numTerms;

b = 25; c = 30; d = 60; e = 10;
numTerms = 4;

average = (b+c+d+e) / numTerms;

“Better” Version

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

Program Variables

 Lastly, variables can be initialized when
they are declared.

 Does that mean those variables will
behave like constants?

 No
 Their values can still be changed later in the

program.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

double b = 25, c = 30, d = 60,
 e = 10, average;

int numTerms = 4;

average = (b+c+d+e) / numTerms;

Initialized Version

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

Program Variables

 Notice the use of quotes in characters and
strings.

 The type of box that a literal is given is
defined by its quotes.

 Single quotes get a character box. ‘x’ ‘#’
 Double quotes get a string box. “x” “1x3@”
 Double quotes are not single quotes typed

twice.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

char name1, name2, name3;
string s1, s2;

name1 = 'B';
name2 = 'abc';
name3 = "abc";

s1 = "B";
s2 = "abc";

 Examples:

66

name1 name2

works fine

s1

s2

box not big enough

66

97 98 99

name3

box not the right kind

works fine

works fine

Program Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

 Booleans can contain only the values true
or false.

 They will become more useful as the
course progresses.

Program Variables

Types

 The type of a variable provides very
important information to the programmer
and to the compiler

 The number of students in a tutorial is an
integer, not a real number or double – you
cannot have 23.45 students in a class!

 Some operations are only valid over
certain types

 Type conversions when mixing types
© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

 Remember “Click Me” from lab 1?

void …(…)
{
 textBox1.Text = "You Clicked 'Click Me'";
}

Type Conversion

You Clicked 'Click Me'

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

void …(…)
{
 int myInteger = 10;
 textBox1.Text = myInteger;
}

Type Conversion

 What happens when we run the method
with an integer?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

Type Conversion

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 43

Type Conversion

 The variables are in different size/kind of
boxes.

 We need to do an explicit conversion from
integer to string.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

void …(…)
{
 int myInteger = 10;
 textBox1.Text = Convert.ToString(myInteger);
}

Example Program 2

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

Type Conversion

 The Convert methods are found in the
System library.

 In order to use them as demonstrated in
this tutorial the following line must be at
the beginning of your source file:
 using System;

 Visual Studio does this by default for you.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 46

Example Program 3

 It’s quite natural to want a numerical type
along with a descriptive string in a textbox.

 How do we do that?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 47

private void ClickMe_Click(object sender,
 EventArgs e)
{
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is ??";
}

We want the value of sum!

Example Program 3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 48

private void ClickMe_Click(object sender,
 EventArgs e)
{
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is sum";
}

Example Program 3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 49

private void button1_Click(object sender,
 EventArgs e){
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is sum";
}

Example Program 3

Click Me

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 50

Example Program 3

 We need to convert sum into a string and
concatenate it with “The Answer to …”.

 Convert.ToString(intValue) produces a
string consisting of characters
representing the value of intValue.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 51

private void ClickMe_Click(object sender,
 EventArgs e)
{
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is " +

 Convert.ToString(sum);
}

Example Program 3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 52

private void button1_Click(object sender,
 EventArgs e){
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is " +

 Convert.ToString(sum);
}

Example Program 3

Click Me

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 53

Example Program 3

 Actually, this is a special case! We did not
need to convert the integer to a string in
this particular case.

 Why? Because the concatenation
operator (+) implicitly converts numerical
values to strings if necessary.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 54

private void ClickMe_Click(object sender,
 EventArgs e)
{
 int sum;

 sum = 35 + 7;
 textBox1.Text = "The Answer to Life,
 The Universe, and Everything is "+ sum;
}

Example Program 3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 55

Concatenation

 Multiple things can be concatenated at
once.

 All must be either strings or implicitly
convertible to strings by the concatenation
operator.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 56

string myVeryLongString;
int myAge = 22;
string myBirthday = "January 3, 1984";

myVeryLongString = " I was born on "
+ myBirthday + ". I am now " + myAge;

Example Program 4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 57

string myVeryLongString;
int myAge = 22;
string myBirthday = "January 3, 1984";

myVeryLongString = " I was born on "
+ myBirthday + ". I am now " + myAge;

String

Variable of type string
String Integer which is implicitly

convertible to a string.

Example Program 4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 58

Inputting Data

 Suppose we want to change the inputs used to
calculate the answer to Life, the Universe, and
Everything.

 We could read two numbers from two textboxes,
add them, and then write the answer to a textbox.

Click Me

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 59

private void ClickMe_Click(object sender,
 EventArgs e)

{
 int sum;

 sum = inputBox1.Text + inputBox2.Text;
 outputBox.Text = "The Answer to Life, The Universe,

and Everything is " + sum;
 }

Example Program 5

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 60

Inputting Data

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 61

Inputting Data

 Textboxes deal only with Strings.

 We need our inputs to be integers.

 An explicit conversion is required.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 62

private void ClickMe_Click(object sender,
 EventArgs e)

{
 int sum;

 sum = Convert.ToInt32(inputBox1.Text)
 + Convert.ToInt32(inputBox2.Text);

 outputBox.Text = "The Answer to Life, The Universe,

and Everything is " + sum;
 }

Example Program 6

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 63

private void ClickMe_Click(object sender,
 EventArgs e)

{
 int sum;

 sum = Convert.ToInt32(inputBox1.Text)
 + Convert.ToInt32(inputBox2.Text);

 outputBox.Text = "The Answer to Life, The Universe,

and Everything is " + sum;
 }

Example Program 6

Click Me

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 64

Points to Ponder

 Program variables
 Variable typing
 Type conversions

