Computers, Variables and
Types

Engineering 1D04, Teaching
Session 2

Typical Computer

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

An Abstract View of Computers

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

An Abstract View of Computers

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Programming Languages

= Algorithms are communicated to the
computer using a programming language

= Evolution of programming languages:
* Machine language: 01000111000110100
 Assembly code: mov, and, push, add, jmp, etc

* High level languages: FORTRAN, Pascal,
Basic, C, C++, Java, Visual C#, Visual Basic,
Haskell, Ocamli, ...

= Conversion of high level language to
machine code is via a compiler

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

Abstract View of Memory

Memory “boxes”

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Variables

= When we create algorithms that solve
problems, we typically model the problem
we are solving - we create an abstraction
of the real problem and then use
properties of that abstract model to get a
solution that (hopefully) solves the original
problem.

= \We often create mathematical variables to
represent physical entities.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Mathematical Variables

velocity of caris v

starts at velocity v,

t represents time
=\ acceleration of car is a

: — .

so, at this point in time, what is the car’s velocity?

v=yv,+at

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Program Variables

= Computer programs implement algorithms
and we need to calculate values that
represent physical entities or simply data
items. We therefore need to manipulate
and store data.

= A program variable is a named memory
location that can be used to store data.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Program Variables

Birthday: | — myString

K

\

myVariable

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

Introduction to Program Variables

» Variables can have different forms
depending on the type of data you wish to
store in them.

* Int variables store integer numbers.
* Float variables (double) store real numbers.
e Char variables store a single character.

e String variables store text (multiple
characters).

e Bool variables store true or false.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

Introduction to Program Variables

= Variables must be declared before they

can be used.

= Declaring a variable assigns a name to a
previously unused memory location.

int myInteger;
double myDouble;

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

program segments will be
/shown in these “page” templates

1"

Introduction to Program Variables

K

\

mylnteger

int myInteger;
double myDouble;

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

Introduction to Program Variables

myDouble
A/

K

int myInteger;
double myDouble;

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

\

mylnteger

13

Introduction to Program Variables

= Multiple variables of the same type can be
declared at the same time by separating
them with a comma.

int myInteger, myOtherInteger, myThirdInt;
double myDouble;

e

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Program Variables

= Variables can be assigned a value with
the assignment (=) operator.

Variable Constant / Literal
\ Y
myInteger = 5;
myDouble = 4.5;
myInteger = 25;

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

Introduction to Program Variables

myDouble
A/
5
\\
mylnteger

S myInteger = 5;
% myDouble = 4.5;
3 myInteger = 25;

@)

Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

Introduction to Program Variables

myDouble
5

5
\\
mylnteger
o, — .
S myInteger = 5;
% myDouble = 4.5;
3 myInteger = 25;

@)

Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

Introduction to Program Variables

myInteger =
myDouble
myInteger

sequence

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

myDouble
5
25
\\
mylnteger

The value at any location can
change from time to time.

18

Introduction to Program Variables

= Remember the definition of a variable:
* A named memory location used to store data.

* The assignment operator (=) can be thought
of as a left arrow, placing a value into a
memory location.

* mylnteger < 5; (put 5 in the mylnteger box)

= But we don’t have < on our keyboard, so we
use the equals sign instead.
* myinteger = 5;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Program Variables

* |n our example, mylnteger holds different
values at different times.
e Sequence is important here!
* The current contents of a variable is what was
most recently assigned to it.
= Assignment always occurs from right to left
* mylnteger = 5;
« Storing 5 into “mylnteger” makes sense.
* 5 = mylinteger,
« Storing “mylnteger” into the value of 5 makes no sense.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

Introduction to Program Variables

myInteger = myOtherInteger;

N

What does this do?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Program Variables

myInteger = myOtherInteger;

e

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

T

Pl

123
i

'

mylnteger

‘123L\

myOtherinteger

22

Introduction to Program Variables

myInteger = myOtherInteger;

e

= WWhen not being assigned to, a variable
stands in for the value that it contains.

* |n this case, if myOtherlnteger contained
20 then this statement would be
equivalent to the following:

myInteger = 20;

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Program Variables

myInteger = myInteger + 5;

N e

What does this do?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Program Variables

myInteger = myInteger + 5;

e

» This adds 5 to the current contents of
mylnteger and stores the result back into
mylnteger.

* If mylnteger used to contain 20, it now contains
25.

= Repeating this statement will result in
repeatedly adding 5 to myinteger.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Example Program 1

double a, b, ¢, d, e, £, g;
a=4; b = 25; ¢ = 30;

d =60; e = 10;

f = b; What does
f =f + c; -

f-f 44 this
£=f+e; program do?
g=£f/ a;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

Example Program 1

= |[t's not intuitively obvious what this
program does.

= [t can be improved easily by giving the
variables useful names.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Example Program 1

double b, ¢, d, e, sum, average;
int numTerms;

numTerms = 4;

b =

sum
sum
sum
sum

25; ¢ = 30; d

b;

sum + C;
sum + d;
sum + e;

average = sum / numTerms;

r

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

28

Program Variables

= There are a number of variable naming
conventions.

* |[n 1D04, the following convention will be
adopted:
e All first words are lowercase.

e Subsequent words have their first letter
capitalized.

 fred, theVariable, bobLovesMe

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

29

Program Variables

= \ariables cannot start with a number.

= Extremely short or exceptionally long
variable names can be hard to work with.
Use an appropriate length.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Program Variables

* There is still room for improvement in the
code that calculates the average. \What can
you do to make it “better’?

Program Variables

* There is still room for improvement in the
code that calculates the average. In this
case, we can simply add the values of b, c, d
and e together without doing it sequentially.

= \While we do this we need to bear in mind
that:

* Rules for the mathematical order of operations
apply to operations on variables.

* WWe should use brackets anywhere our intention
might be unclear.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

“Better” Version

double b, c, d, e, average;
int numTerms;

b=25;, ¢c=30; d=60; e = 10;
numTerms = 4;

average = (b+c+d+e) / numTerms;

Z

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Program Variables

= | astly, variables can be initialized when
they are declared.

= Does that mean those variables will
behave like constants?

= No

* Their values can still be changed later in the
program.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

Initialized Version

double b = 25, ¢ = 30, d = 60,
e = 10, average;
int numTerms = 4;

average = (b+c+d+e) / numTerms;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Z

35

Program Variables

* Notice the use of quotes in characters and
strings.

= The type of box that a literal is given is
defined by its quotes.

»= Single quotes get a character box. xX' #
= Double quotes get a string box. “x” “Ix3@"

= Double quotes are not single quotes typed
twice.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Program Variables

= Examples:

name name2 name3

char namel, nameZ2, nam.e3;//JT
66

I
b
2
S
o
ﬂ'_
2
o®
Q

string sl, s2
uon

: N
namel ot B9
por e 1
name2 = 'abc' ///;gﬁﬂg///g s
name3 = "abc"; 166 ©
| wotsfre
Sl —_ "B"; s2
ine
s2 = "abe"; works fin V“L’ 97 98 99 ©

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

Program Variables

= Booleans can contain only the values true
or false.

= They will become more useful as the
course progresses.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

38

Types

* The type of a variable provides very
important information to the programmer
and to the compiler

= The number of students in a tutorial is an
integer, not a real number or double — you
cannot have 23.45 students in a class!

= Some operations are only valid over
certain types

= Type conversions when mixing types

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Type Conversion

= Remember “Click Me” from lab 1?

Hello City

' You Clicked 'Click Me'

[Erase |

ClickMe | RolDver |

textBoxl.Text = "You Clicked 'Click Me'";

}
e

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

Type Conversion

* \What happens when we run the method

with an integer?

int myInteger
textBoxl.Text

10;
myInteger;

[~

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

41

Type Conversion

& 1 Error | | 1\ 0Warnings | (i) 0 Messages
Description File
Q 1 Cannot implicitly convert type 'int' to 'string' Forml.cs

Ready

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

Type Conversion

= The variables are in different size/kind of
boxes.

= \We need to do an explicit conversion from
integer to string.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Example Program 2

Hello City

10

int myInteger = 10;
textBoxl.Text = Convert.ToString (myInteger) ;

e

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

Type Conversion

= The Convert methods are found in the
System library.

* |[n order to use them as demonstrated in
this tutorial the following line must be at
the beginning of your source file:

e using System;

aa

Example Program 3

* |[t's quite natural to want a numerical type
along with a descriptive string in a textbox.

= How do we do that?

Example Program 3

private void ClickMe Click (object sender,
EventArgs e)

{

int sum;
sum = 35 + 7;

textBoxl.Text = "The Answer to Life,
The Universe, and Everything is ??";

7

We want the value of sum!

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 47

Example Program 3

private void ClickMe Click (object sender,
EventArgs e)

{

int sum;
sum = 35 + 7;

textBoxl.Text = "The Answer to Life,
The Universe, and Everything is sum";

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 48

Example Program 3

Form1

The Answer to Life, The Universe, and Everything is sum

pri

Click Me

sum = 35 + 7;
textBoxl.Text = "The Answer to Life,
The Universe, and Everything is sum";

ZZ:;77

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 49

Example Program 3

= WWe need to convert sum into a string and
concatenate it with “The Answer to ...".

= Convert.ToString(intValue) produces a
string consisting of characters
representing the value of intValue.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Example Program 3

private void ClickMe Click (object sender,
EventArgs e)

{

int sum;
sum = 35 + 7;

textBoxl.Text = "The Answer to Life,
The Universe, and Everything is " +

Convert.ToString(sum) ;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 51

Example Program 3

Formi

The Answer to Life, The Universe, and Everything is 42

Click Me

sum = 35 + 7;

textBoxl.Text = "The Answer to Life,
The Universe, and Everything is " +
Convert.ToString (sum) ;

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 52

Example Program 3

= Actually, this is a special case! We did not
need to convert the integer to a string in
this particular case.

» Why? Because the concatenation
operator (+) implicitly converts numerical
values to strings if necessary.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Example Program 3

private void ClickMe Click (object sender,
EventArgs e)

{
int sum;
sum = 35 + 7;

textBoxl.Text = "The Answer to Life,
The Universe, and Everything is "+ sum;

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 54

Concatenation

= Multiple things can be concatenated at
once.

= All must be either strings or implicitly
convertible to strings by the concatenation

operator.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Example Program 4

string myVerylLongString;
int myAge = 22;

string myBirthday = "January 3, 1984";

myVeryLongString = " I was born on "

+ myBirthday + ". I am now " + myAge;

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

56

Example Program 4

string myVerylLongString;
int myAge = 22;
string myBirthday = "January 3, 1984";
| . String —
myVeryLongString = " I was born on "
+ myBirthday + "\\I am now.," + myAge;

A
Integer which is implicitly

convertible to a stfing. .

String
Variable of type string

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 57

Inputting Data

= Suppose we want to change the inputs used to
calculate the answer to Life, the Universe, and
Everything.

= \WWe could read two numbers from two textboxes,
add them, and then write the answer to a textbox.

Formi

| Click Me

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 58

Example Program 5

private void ClickMe Click (object sender,
EventArgs e)
{

int sum;

sum = inputBoxl.Text + inputBox2.Text;
outputBox.Text = "The Answer to Life, The Universe,
and Everything is " + sum;

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 59

Inputting Data

IQ 1 Errorl I Ao Warningsl (i) 0 Messages

Description File Line

@ 1 Cannot implicitly convert type 'string' to ‘int’ Forml.cs 22

Ready

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

60

Inputting Data

= Textboxes deal only with Strings.
= WWe need our inputs to be integers.

= An explicit conversion is required.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Example Program 6

private void ClickMe Click (object sender,
EventArgs e)

{

int sum;

sum = Convert.ToInt32 (inputBoxl.Text)
+ Convert.ToInt32 (inputBox2.Text) ;

outputBox.Text = "The Answer to Life, The Universe,
and Everything is " + sum;

} 7

62

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Example Program 6

Formi

5 | 23
Inhput1 Input2

private void Clic

iThe Answer to Life, The Universe, and Everything is 28

int sum; | Click Me

sum = Convert.ToInt32 (inputBoxl.Text)
+ Convert.ToInt32 (inputBox2.Text) ;

outputBox.Text = "The Answer to Life, The Universe,
and Everything is " + sum;

} 7

63

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Points to Ponder

= Program variables
= Variable typing
= Type conversions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

