Methods, Scope of Variables
and Conditional Statements

Engineering 1D04, Teaching
Session 3

An Example Method

A function that returns the square of its
input argument: square(x) = x?

double square (double x)
{

return x*x;

}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Methods

* [n Lab 2 you were introduced to creating
simple methods.

= L et's recap

void doIt()

{
textBoxl.Text = "Hello Hamilton!!";

}

e

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Methods

void doIt()
{

Button Entered

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Button handler

textBoxl.Text = "Hello Hamilton!!";
}
e
ClickMe Button , |ClickMe Button
Pushed handler
dolt() | [Textin Textbox
MouseOverMe MouseOverMe
—>

Introduction to Methods

Method Signature

\

void dolt()
Return Type Parameters

= dolt has no inputs (no parameters) and no
outputs (a void return type).

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Methods

* To make dolt() more useful we can add a
parameter (an input).

void doIt2 (string string4Textbox)

{
textBoxl.Text = string4Textbox;

} P

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Methods

= \When dolt2 is called, we now need to
pass it a parameter.

doIt2("Hello Hamilton!!") ;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Methods

= A copy of the string "Hello Hamilton!!" is then
stored within the variable string4 Textbox.

doIt2 ("Hello Hamilton!!'") ;

v \ 4
void doIt2 (string string4Textbox)

{

textBoxl.Text = string4Textbox;

} /‘ P
"Hello Hamilton!!"

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

Introduction to Methods

= dolt2 could also be called with a string

variable as a parameter.

string myStringVariable
doIt2 (myStringVariable) ;

"Hello";

e

; \
void doIt2 (string string4Textbox)
{

textBoxl . Text

}

/

string4Textbox;

e

"Hello"

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Methods

= A copy of the variable's data is passed as a
parameter. The copy is then no longer

associated with myStringVariable.

doIt2 (myStringVariable) ;

string myStringVariable = "Hello";

P

\ .
N\ ~

void doIt2 (string string4Textbox)

}

| ‘box;
textBoxl.Text = string4Textbox;

e

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

"Hello"

Why Methods?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

10

Why Methods?

= Separation of concerns
* A natural way to handle complexity
* Routinely used in all engineering fields

= Understandability
* Provide meaningful names
e Allows to hide details behind the interface

= Maintainability
= Reusabillity

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

1"

Method Parameters

= | et’'s create a method to add two numbers
together and return a string containing the
result.

= We need 2 inputs and 1 output from the
method. nouts

output

string sum(int ii, intik2)

{

return Convert.ToString(xl + x2);

} P

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

Method Parameters

string sum(int x1, int x2)

{

return Convert.ToString(xl + x2);

}

s

= Multiple parameters can be given by
separating them with commas.

= Replacing the void with string gives the
method the return type string.

= The keyword return specifies the output

value and ends the method call. What does that
© Copyright 2006 David Das, Ryan Lortie , Alan Wassyng — mean?

Methods

= The keyword return specifies the output
value and ends the method call.

/'

* Ending the call to the method means that
there is no more processing done by that
method and control returns to the action
immediately after the call.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

14

Full Sum Example

event handler created by double clicking a button in Visual C#
private void buttonl Click (object sender, EventArgs e)

{

textBoxl.Text =_sum(4, 3) ;

textBox1 .Visiblm\ action that executes

} immediately after sum
string sum (int x1, int x2)
{
return Convert.ToString(xl + x2) ; |sum method
}

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

Full Sum Example

event handler created by double clicking a button in Visual C#

/

private void buttonl Click (object sender, EventArgs e) {
textBoxl.Text = sum(4, 3) ;
textBoxl .Visible = true;

string sum (int x1, int x2) {
return Convert.ToString(xl + x2) ;

}

sum method

[button]

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Methods

= Similar to variables, there are often
naming conventions for Methods.

* |[n 1D04, the following convention will be
adopted:

e All first words are lowercase.

e Subsequent words have their first letter
capitalized.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

17

Introduction to Methods

* Event handlers are simply methods that
get called when an event happens.

private void buttonl Click (object sender,
EventArgs e)

{

}
e

= The private keyword will be discussed
later

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Methods

= Method execution works like this:
* New copy of the method is created
* Method executes
* This copy of the method is destroyed.

e Control returns to the action immediately after
the call to the method

= Because of the destruction of methods between
calls, methods cannot remember the contents of
their local variables from previous calls.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

The Main Method

= Every C# program has a Main method

= |t is written for you automatically by Visual

C#

» By default the Main method is in
Program.cs

static void Main()

{

Application.Run (new Forml()) ;

}

Application.EnableVisualStyles() ;

[

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

20

Scope of Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Introduction to Scope

* The scope of a variable defines where it is
visible within a program.

= All variables so far have had local scopes.
They are only visible within the methods
they are declared in and their values only
last as long as the method is running.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Full Sum Example

= \What are the scopes of the variables in
this program?

private void buttonl Click (object sender, EventArgs e)

{
textBoxl.Text = sum(4, 3) ;
textBoxl .Visible = true;

}

string sum (int x1, int x2)
{

return Convert.ToString(xl + x2) ;

}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

Full Sum Example

buttonl Click
— sum

Integer x1
Integer x2

private void buttonl Click (object sender, EventArgs e)

{
textBoxl.Text = sum(4, 3);

ignore these
textBoxl .Visible = true;

for now

}

string sum (int x1, int x2)
{

return Convert.ToString(xl + x2) ;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

Variable Scope

* |n general, the scope of a variable is
between the {}'s that it is declared in.

= |t Is possible to have variables that are
visible to all methods and retain their value
as long as the program runs.

* These are “global” variables.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Variable Scope

public partial class Forml

{
public Forml ()

{

InitializeComponent() ;

}

Form

_ Global Variable

int ticket; <

void reset ()

{
ticket = 0O;

}

int getTicket ()

{
ticket = ticket+l;

return ticket;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

26

Variable Scope

Forml Global Variables:
Integer ticket

reset

getTicket

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Variable Scope

= The example uses a global variable to
keep track of persistent information.

= The global variable is accessed by two
methods and shares its value between
them.

» |t is declared inside the class {}'s, but
outside of all the methods.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Variable Scope

= Each time get_ticket() is called the counter
IS Increased and a new ticket number is
returned.

= Calling reset() resets the counter to 0.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Variable Scope

public partial class Forml : Form

{
public Forml ()

{
InitializeComponent() ; Cr ate a
} scope
nt x. v _
e diagram for
void go () .
{ this code.

int x; string myString;

}

int stop()

{
double y; int theInteger;

: 4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

30

Variable Scope

Are these the same??

\
Forml Global Variables:
v Integer x

/ Integer y
go
Integer x
String myString stop

Double y

Integer thelnteger

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

31

Variable Scope

No. Why?
\
Forml Global Variables:
v Integer x

/ Integer y
go
Integer x
String myString stop

Double y

Integer thelnteger

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Variable Scope

= |f there is a local and global variable with
the same name they are not the same
variable.

= |f there is a local and global variable with
the same name in scope, the local one is
used while the global one is hidden.

* |[f you need to access a global variable,
don't create a local variable with it's name.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Conditional Statements

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

A Problem: Slope of a Line

* We need a function that determines if the
slope of a line is positive or negative.

= [t must output either “Positive Slope” or
“Negative Slope” to a textbox.

/*Point 2 (X2, y2)

A line can be defined

/y =mx+Db by the coordinates of
/ its endpoints - that is
\ what we will assume

Point 1 (x1, y1) for this problem

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

A Problem: Slope of a Line

= We want to create a method (called
pnSlope) to determine the slope and
display it in a textbox

void pnSlope (double x1, double yl,
double x2, double y2)

{

}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

A Problem: Slope of a Line

/xPoint 2 (X2, y2)

/ y=mx-+Db

Ve

k‘\Point 1 (x1, y1)

= How do we calculate the slope?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

A Problem: Slope of a Line

/xPoint 2 (X2, y2)

/ y=mx-+Db

Ve

k‘\Point 1 (x1, y1)

= How do we calculate the slope?
y2—y1

X2 — X1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

A Problem: Slope of a Line

» How do we determine if it's positive or
negative?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Conditional Statements

void pnSlope (double x1, double yl,
double x2,double y2)

{
double slope = (y2 - yl) / (x2 - x1);

if (slope > 0)
textBoxl.Text

else
textBoxl.Text = "Negative Slope";

"Positive Slope";

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

Conditional Statements

void pnSlope (double x1, double yl,
double x2,double y2)

{

double slope = (y2 - vl x2 — x1

Form1

if (slope > 0)
textBoxl.Text

else
textBoxl.Text

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

Conditional Statements

* (slope > 0) is called a condition.

= A condition evaluates to a Boolean (true or
false).

» |f slope > 0, the condition is true.

» |f slope <= 0, the condition is false.

What does this mean?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

42

Conditional Statements

= There are a number of operators that
create conditions.
e > >= < <= do exactly what you think they
should.
« 5 >= 4 evaluates to true.

« 5 >= 5 evaluates to true.
« 5 >= 6 evaluates to false.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

43

Conditional Statements

e == (Equality) Has to be different from the =
assignment operator!

« 5 == 5 evaluates to true.

« 5 == 6 evaluates to false.

« 5 = 6 assigns 6 to 5 and creates a compiler error.
e I=(Not Equal)

« 5 |= 3 evaluates to true.

« 5 1= 5 evaluates to false.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

44

Conditional Statements

* What if we want to modify the function so
that it also returns the absolute value of
the slope.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Conditional Statements

double pnAbsSlope (double x1, double yl,
double x2, double y2)

{
double slope = (y2 - yl) / (x2 - x1);

if (slope > 0)
textBoxl.Text

"Positive Slope";

else
textBoxl.Text = "Negative Slope";
slope = -slope;

return slope;

| F

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 46

Conditional Statements

double pnAbsSlope (double x1, double yl,
double x2, double y2)

{
double slope = (y2 - yl) / (x2 - x1);

if (slope > 0)

textBoxl.Text = "PlEIY

else
textBoxl.Text = "N| « 2 |3
slope = -slope; " B 2

Positive Slope

ABS Slo
return slope; p<:::::>

} 5o
Why is the output wrong? | - 7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 47

If Statement

= WWe can only specify one statement for
each branch of an if statement.

if (condition) or if (condition) statement1;
statement1; else statement2;
else

statement2;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

48

Compound Statements

= \We can make multiple statements look like
a single statement by enclosing them in

matching braces

if (condition)

{

statement1;
statement2;

}

else
statement3;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

compound
statement

49

Conditional Statements

double pnAbsSlope (double x1, double yl1,
double x2, double y2)
{
double slope = (y2 - yl) / (x2 - x1);

if (slope > 0)

textBoxl.Text = "Positive Slope";
else
{
textBoxl.Text = "Negative Slope";
slope = -slope;
}
return slope; now it will work correctly
} ©

F

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 50

