
Methods, Scope of Variables
and Conditional Statements

Engineering 1D04, Teaching
Session 3

An Example Method

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

double square(double x)
{
 return x*x;
}

A function that returns the square of its
input argument: square(x) = x2

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

void doIt()
{
 textBox1.Text = "Hello Hamilton!!";
}

Introduction to Methods
 In Lab 2 you were introduced to creating

simple methods.

 Let’s recap

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

ClickMe Button
handler

doIt()

MouseOverMe
Button handler

Text in Textbox

ClickMe Button
Pushed

MouseOverMe
Button Entered

void doIt()
{
 textBox1.Text = "Hello Hamilton!!";
}

Introduction to Methods

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

 doIt has no inputs (no parameters) and no
outputs (a void return type).

void doIt()

Method Signature

Return Type Parameters

Introduction to Methods

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

 To make doIt() more useful we can add a
parameter (an input).

void doIt2(string string4Textbox)
{

 textBox1.Text = string4Textbox;
}

Introduction to Methods

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

doIt2("Hello Hamilton!!");

Introduction to Methods

 When doIt2 is called, we now need to
pass it a parameter.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

doIt2("Hello Hamilton!!");

void doIt2(string string4Textbox)
{

 textBox1.Text = string4Textbox;
}

"Hello Hamilton!!"

Introduction to Methods

 A copy of the string "Hello Hamilton!!" is then
stored within the variable string4Textbox.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

 doIt2 could also be called with a string
variable as a parameter.

string myStringVariable = "Hello";
doIt2(myStringVariable);

void doIt2(string string4Textbox)
{

 textBox1.Text = string4Textbox;
}

"Hello"

Introduction to Methods

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

 A copy of the variable's data is passed as a
parameter. The copy is then no longer
associated with myStringVariable.
string myStringVariable = "Hello";
doIt2(myStringVariable);

void doIt2(string string4Textbox)
{

 textBox1.Text = string4Textbox;
}

"Hello"

Introduction to Methods

Why Methods?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

Why Methods?

 Separation of concerns
 A natural way to handle complexity
 Routinely used in all engineering fields

 Understandability
 Provide meaningful names
 Allows to hide details behind the interface

 Maintainability
 Reusability

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

string sum(int x1, int x2)
{

return Convert.ToString(x1 + x2);
}

Method Parameters

 Let’s create a method to add two numbers
together and return a string containing the
result.

 We need 2 inputs and 1 output from the
method.

output
inputs

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

 Multiple parameters can be given by
separating them with commas.

 Replacing the void with string gives the
method the return type string.

 The keyword return specifies the output
value and ends the method call.

string sum(int x1, int x2)
{

return Convert.ToString(x1 + x2);
}

Method Parameters

What does that
mean?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

Methods

 The keyword return specifies the output
value and ends the method call.

 Ending the call to the method means that
there is no more processing done by that
method and control returns to the action
immediately after the call.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

private void button1_Click(object sender, EventArgs e)
{

textBox1.Text = sum(4,3);
textBox1.Visible = true;

}

string sum (int x1, int x2)
{

return Convert.ToString(x1 + x2);
}

event handler created by double clicking a button in Visual C#

sum method

Full Sum Example

action that executes
immediately after sum

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

private void button1_Click(object sender, EventArgs e){
textBox1.Text = sum(4,3);
textBox1.Visible = true;

}

string sum (int x1, int x2){

return Convert.ToString(x1 + x2);
}

event handler created by double clicking a button in Visual C#

sum method

Full Sum Example

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

Introduction to Methods

 Similar to variables, there are often
naming conventions for Methods.

 In 1D04, the following convention will be
adopted:
 All first words are lowercase.
 Subsequent words have their first letter

capitalized.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

 Event handlers are simply methods that
get called when an event happens.

 The private keyword will be discussed
later

private void button1_Click(object sender,
 EventArgs e)

{
..do something here ..

}

Introduction to Methods

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

Introduction to Methods

 Method execution works like this:
 New copy of the method is created
 Method executes
 This copy of the method is destroyed.
 Control returns to the action immediately after

the call to the method

 Because of the destruction of methods between
calls, methods cannot remember the contents of
their local variables from previous calls.

The Main Method
 Every C# program has a Main method
 It is written for you automatically by Visual

C#
 By default the Main method is in

Program.cs

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

 static void Main()
 {
 Application.EnableVisualStyles();
 …
 Application.Run(new Form1());
 }

Scope of Variables

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

Introduction to Scope

 The scope of a variable defines where it is
visible within a program.

 All variables so far have had local scopes.
They are only visible within the methods
they are declared in and their values only
last as long as the method is running.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

private void button1_Click(object sender, EventArgs e)
{

textBox1.Text = sum(4,3);
textBox1.Visible = true;

}

string sum (int x1, int x2)
{

return Convert.ToString(x1 + x2);
}

 What are the scopes of the variables in
this program?

Full Sum Example

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

private void button1_Click(object sender, EventArgs e)
{

textBox1.Text = sum(4,3);
textBox1.Visible = true;

}

string sum (int x1, int x2)
{

return Convert.ToString(x1 + x2);
}

button1_Click
sum

Integer x1
Integer x2

Full Sum Example

ignore these
for now

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

Variable Scope

 In general, the scope of a variable is
between the {}’s that it is declared in.

 It is possible to have variables that are
visible to all methods and retain their value
as long as the program runs.

 These are “global” variables.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

public partial class Form1 : Form
{
 public Form1()
 {
 InitializeComponent();
 }

 int ticket;

 void reset()
 {
 ticket = 0;
 }

 int getTicket()
 {
 ticket = ticket+1;
 return ticket;
 }
}

Global Variable

Variable Scope

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

reset

getTicket

Global Variables:
Integer ticket

Form1

Variable Scope

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 28

Variable Scope

 The example uses a global variable to
keep track of persistent information.

 The global variable is accessed by two
methods and shares its value between
them.

 It is declared inside the class {}’s, but
outside of all the methods.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

Variable Scope

 Each time get_ticket() is called the counter
is increased and a new ticket number is
returned.

 Calling reset() resets the counter to 0.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30

public partial class Form1 : Form
{
 public Form1()
 {
 InitializeComponent();
 }

 int x, y;

 void go()
 {

int x; string myString;
… more code here

 }

 int stop()
 {
 double y; int theInteger;

… more code here
 }
}

Variable Scope

Create a
scope
diagram for
this code.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

go
Integer x
String myString stop

Double y
Integer theInteger

Global Variables:
Integer x
Integer y

Form1

Are these the same??

Variable Scope

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

go
Integer x
String myString stop

Double y
Integer theInteger

Global Variables:
Integer x
Integer y

Form1

No. Why?

Variable Scope

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

Variable Scope

 If there is a local and global variable with
the same name they are not the same
variable.

 If there is a local and global variable with
the same name in scope, the local one is
used while the global one is hidden.

 If you need to access a global variable,
don't create a local variable with it's name.

Conditional Statements

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

A Problem: Slope of a Line

 We need a function that determines if the
slope of a line is positive or negative.

 It must output either “Positive Slope” or
“Negative Slope” to a textbox.

Point 1 (x1, y1)

Point 2 (x2, y2)

y = mx + b
A line can be defined
by the coordinates of
its endpoints - that is
what we will assume
for this problem

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

A Problem: Slope of a Line

 We want to create a method (called
pnSlope) to determine the slope and
display it in a textbox

void pnSlope (double x1, double y1,
 double x2, double y2)

{
. . . ?

}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

Point 1 (x1, y1)

Point 2 (x2, y2)

y = mx + b

 How do we calculate the slope?

A Problem: Slope of a Line

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

Point 1 (x1, y1)

Point 2 (x2, y2)

y = mx + b

 How do we calculate the slope?

A Problem: Slope of a Line

y2 – y1

x2 – x1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

A Problem: Slope of a Line

 How do we determine if it’s positive or
negative?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

void pnSlope(double x1, double y1,
 double x2,double y2)

{
 double slope = (y2 - y1) / (x2 – x1);

 if (slope > 0)
 textBox1.Text = "Positive Slope";
 else
 textBox1.Text = "Negative Slope";
}

Conditional Statements

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

void pnSlope(double x1, double y1,
 double x2,double y2)

{
 double slope = (y2 - y1) / (x2 – x1);

 if (slope > 0)
 textBox1.Text = "Positive Slope";
 else
 textBox1.Text = "Negative Slope";
}

Conditional Statements

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

Conditional Statements

 (slope > 0) is called a condition.

 A condition evaluates to a Boolean (true or
false).

 If slope > 0, the condition is true.

 If slope <= 0, the condition is false.
What does this mean?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 43

Conditional Statements

 There are a number of operators that
create conditions.
 >, >=, <, <= do exactly what you think they

should.
• 5 >= 4 evaluates to true.
• 5 >= 5 evaluates to true.
• 5 >= 6 evaluates to false.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

Conditional Statements

 == (Equality) Has to be different from the =
assignment operator!

• 5 == 5 evaluates to true.
• 5 == 6 evaluates to false.
• 5 = 6 assigns 6 to 5 and creates a compiler error.

 != (Not Equal)
• 5 != 3 evaluates to true.
• 5 != 5 evaluates to false.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

Conditional Statements

 What if we want to modify the function so
that it also returns the absolute value of
the slope.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 46

double pnAbsSlope(double x1, double y1,
 double x2, double y2)

{
 double slope = (y2 - y1) / (x2 – x1);

 if (slope > 0)
 textBox1.Text = "Positive Slope";
 else
 textBox1.Text = "Negative Slope";

 slope = -slope;

 return slope;
}

Conditional Statements

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 47

double pnAbsSlope(double x1, double y1,
 double x2, double y2)

{
 double slope = (y2 - y1) / (x2 – x1);

 if (slope > 0)
 textBox1.Text = "Positive Slope";
 else
 textBox1.Text = "Negative Slope";

 slope = -slope;

 return slope;
}

Conditional Statements

Why is the output wrong?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 48

If Statement

 We can only specify one statement for
each branch of an if statement.

if (condition) or if (condition) statement1;
 statement1; else statement2;
else
 statement2;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 49

Compound Statements

 We can make multiple statements look like
a single statement by enclosing them in
matching braces

if (condition)
{
 statement1;
 statement2;
}
else
 statement3;

compound
statement

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 50

double pnAbsSlope(double x1, double y1,
 double x2, double y2)

{
 double slope = (y2 - y1) / (x2 – x1);
 if (slope > 0)
 textBox1.Text = "Positive Slope";
 else
 {
 textBox1.Text = "Negative Slope";

 slope = -slope;
 }
 return slope;
}

Conditional Statements

now it will work correctly


