
Arrays, Type Casting and
Constants

Engineering 1D04, Teaching
Session 5



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

High Score System

 We want to produce a program to keep
track of the high scores in a video game.

 The top ten scores and the names of the
players must be recorded in order.

 We must have a mechanism for inserting a
new score and a mechanism for displaying
the current scores.



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

High Score System

 Following the ideas from the ticket system
example, write a high score system that
allows the names and scores of the top
ten players to be saved.

 Provide a method to add a new score and
a method to print the current high scores.



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

remember: Ticket Example
public partial class Form1 : Form 
{
  public Form1()
  {
    InitializeComponent();  
  }

  int ticket;

  void reset() 
  {
    ticket = 0;
  }

  int getTicket() 
  {
    ticket = ticket+1;
    return ticket;
  }      
}

Plan a high score
system …



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

int player1score, player2score,
    player3score, ...;
...
add_score(){
  if (score > player10score){
    if (score > player9score){
      ow...
}   

High Score System

 Not so easy ... maybe it looked something like this



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

 Aren’t computers supposed to make it
easier to deal with large amounts of similar
information?

print_scores()
{
  ...
 "score1: " + player1score +
 "score2: " + player2score +
 "score3: " + player3score +
  ...
}

High Score System



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

 Arrays are a method of storing a number
of similar items in a way that is easy to
access.

 As an example, let us see how we could
find the sum of a number of integers.

Introduction to Arrays



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

 Consider the following numbers:
59, 100, 26, 35

 (This would form an array x, with elements
x0, x1, x2, x3 and each element must be
the same type of number.)

 Once we have named them like this how
do we add them?

Introduction to Arrays

We can name
those numbers:      x0       x1     x2     x3



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

 Consider the following numbers:
59, 100, 26, 35

 Once we have named them like this how
do we add them?

s = 0
for i = 0,1,2,3
   s = s + xi

Introduction to Arrays

We can name
those numbers:      x0       x1     x2     x3



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

 Consider the following numbers:
59, 100, 26, 35

 Once we have named them like this how
do we add them?

s = 0
for i = 0,1,2,3
   s = s + xi

Introduction to Arrays

We can name
those numbers:      x0       x1     x2     x3

 s = 0;
 for (i=0; i<=3; i++)
 {
    s = s+x[i];
 }



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

 Consider the following numbers:
59, 100, 26, 35

 Once we have named them like this how
do we add them?

s = 0
for i = 0,1,2,3
   s = s + xi

Introduction to Arrays

We can name
those numbers:      x0       x1     x2     x3

 s = 0;
 for (i=0; i<=3; i++)
 {
    s = s+x[i];
 }

index in square
brackets



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

Introduction to Arrays

 int [] x = {59, 100, 26, 35};
 int i, s;
 double ave;
  
 s = 0;
 for (i=0; i<=3; i++)
 {
    s = s+x[i];
 }

We can declare an array with
values for each element in
the array

The elements in the array are
automatically numbered,
starting from 0

Indicates the variable is an array



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

Introduction to Arrays

 int [] x = {59, 100, 26, 35};
 int i, s;
 double ave;
  
 s = 0;
 for (i=0; i<=3; i++)
 {
    s = s+x[i];
 }

do we really have to count
the elements in the array?



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

Introduction to Arrays

 int [] x = {59, 100, 26, 35};
 int i, s;
 double ave;
  
 s = 0;
 for (i = 0; i < x.Length; i++)
 {
    s = s+x[i];
 }

do we really have to count
the elements in the array?

No



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

Introduction to Arrays

 How do we declare the array if we are not
initializing the values in the array?

int [] x = new int[10];

we will discuss “new” in
some detail later

maximum elements in
the array

remember the index
number starts from 0

what do you think x.Length returns now?  



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

Introduction to Arrays

 How do we declare the array if we are not
initializing the values in the array?

int [] x = new int[10];

we will discuss “new” in
some detail later

maximum elements in
the array

remember the index
number starts from 0

what do you think x.Length returns now?  10 = the max number of
                                                                           elements in x



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

 Arrays are a method of storing a number of
similar items in a way that is easy to access.

 Accessing an item in the array is easy - just
put its index number in the square brackets.

int [] score = new int[10];
string [] name = new string[10];

score[5] = 1000;
name[43] = "alan";

recap: Arrays



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

 You can also use an integer variable to
access a specific element in an array.

 Using a variable to select an element from
an array is very useful when combined
with loops.

int [] score = new int[10]; 
int i = 5;
score[i] = 1000;

recap: Arrays



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

double b=25, c=30, d=60, e=10,
       sum, average;
int numTerms = 4;

sum = b;
sum = sum + c;
sum = sum + d;
sum = sum + e;
average = sum / numTerms;

recap: Arrays

 Recall an example from an earlier session:

Take a few minutes
now to do this using
an array instead of
b,c,d and e.

In other words, use
an array called terms
instead of b,c,d,e.



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

double [] terms = {25.0, 30.0, 60.0, 10.0};
double sum, average;
int i;

sum = 0.0;
for (i = 0; i < terms.Length; i++)
  sum = sum + terms[i];
average = sum / terms.Length;

recap: Arrays

 Using an array (each element is a double)

is this okay if we want an answer 
that is a double?

make sure you understand why this is not <=



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

double [] terms = {25.0, 30.0, 60.0, 10.0};
double sum, average;
int i;

sum = 0.0;
for (i = 0; i < terms.Length; i++)
  sum = sum + terms[i];
average = sum / terms.Length;

recap: Arrays

 Using an array (each element is a double)

is this okay if we want an answer 
that is a double?  What if terms and sum
                             are integers?

make sure you understand why this is not <=



Aside: Type Casting

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

int [] terms = {25, 30, 60, 10};
double average;
int i, sum;

sum = 0;
for (i = 0; i < terms.Length; i++)
  sum = sum + terms[i];
average = (double)sum / terms.Length;

Type Casting

 Now each element is an integer

at least one of the values must be a double
or the computer will perform an integer division!

this is called type casting



Implicit Versus Explicit Casting

 In C# 1/3 = 0 and 1.0/3.0 = 0.33333
 What does 1.0/3 equal?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23



Implicit Versus Explicit Casting

 In C# 1/3 = 0 and 1.0/3.0 = 0.33333
 1.0/3 equals 0.3333
 The reason is that the 3 is implicitly

promoted to be a double before the
division operation

 It is best to not rely on the promotion rules
 For all literals that could be floating point

numbers, use .0 on the end

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24



Back to Arrays

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

double [] terms = {25.0, 30.0, 60.0, 10.0};
double sum, average;
int i;

sum = 0.0;
for (i = 0; i < terms.Length; i++)
  sum += terms[i];
average = sum / terms.Length;

recap: Arrays

 Use an array (each element is a double)

more shorthand



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

const int numScores = 10;

int [] score = new int[numScores];
string [] name = new string[numScores];

High Score System

 Using an array for our high score system
would vastly simplify the situation.
this is how we declare a
constant

It is much better to use a constant for the maximum
size of the array rather than a magic literal. why?



Aside: Constants

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 28



Constants
 Constants do not change
 Equates a value with a name
 Improve readability by using the symbolic

name throughout the program
 Change value in only one place
 A loop over numScores is easier to read

and to modify than a loop over a hard
coded literal

 Constants often use ALL_CAPS
© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29



Back to Arrays

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

High Score System

 Assuming that we have entered/calculated
the high scores, how could we print out all
of them?



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

void print_scores()
{
  int i;
  string result = "";
  for (i = 0; i < score.Length; i++)
    result = result + "score[" + (i + 1) +
             "] = " + score[i] + " - " + 
             name[i] + "\n";

  MessageBox.Show(result);
}

High Score System

 How could we print out all the high scores?

what will the output
look like?



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

High Score System

 How do we enter the high scores into the
array so that they are in the order we
want?



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

Alice 7000
Bob 4000
Charlie 2000
Dave 1000

High Score System

 Assume the name and score arrays hold
the following values?



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

Alice 7000
Bob 4000
Charlie 2000
Dave 1000

High Score System

 Assume the name and score arrays hold
the following values?

Now add this new entry:
Eve 5000



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

Alice 7000
Bob 4000
Charlie 2000
Dave 1000

High Score System

 Assume the name and score arrays hold
the following values?

Now add this new entry:
Eve 5000

5000 > 7000?  No.



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

Alice 7000
Bob 4000
Charlie 2000
Dave 1000

High Score System

 Assume the name and score arrays hold
the following values?

Now add this new entry:
Eve 5000

5000 > 4000? Yes. Mark it.



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

Alice 7000
Bob 4000
Charlie 2000

Dave 1000

High Score System

 Assume the name and score arrays hold
the following values?

Now add this new entry:
Eve 5000

Move the last entry 1 down
in the array



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

Alice 7000
Bob 4000

Charlie 2000
Dave 1000

High Score System

 Assume the name and score arrays hold
the following values?

Now add this new entry:
Eve 5000

Then move the second last 
entry 1 down in the array



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

Alice 7000

Bob 4000
Charlie 2000
Dave 1000

High Score System

 Assume the name and score arrays hold
the following values?

Now add this new entry:
Eve 5000

And eventually move the entry
identified 1 down in the array



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

Alice 7000
Eve 5000
Bob 4000
Charlie 2000
Dave 1000

High Score System

 Assume the name and score arrays hold
the following values?

Now add this new entry:
Eve 5000

Put new entry in the array



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

High Score System

 Algorithm
 Determine where the new score belongs.

• Start looking from the top until we find a lower score
and mark that index.

 Each score from that index to the end is shifted
down one element to make room.  It is important
to start this at the end of the array.  The bottom
score “falls off” if the array is already full.

 The new score is inserted at the identified index.



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 43

High Score System

 Add a new entry - newScore, newName:
 Find where it fits

• mark=0
• while (mark ≤ lastElement and scoremark>=newScore)

mark = mark+1
 If at end of list don’t do anything, otherwise …
 if (mark ≤ lastElement)

for j = lastElement downto mark+1
scorej = scorej-1
namej = namej-1

scoremark = newScore
namemark = newName



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

void add_score(int newScore, string newName)
{
  int mark; //index of "marked” entry
  int j; //index used to move entries down
  mark = 0;
  while (mark <= score.Length-1 && 
         score[mark] >= newScore) mark++;
  if (mark <= score.Length-1)  //only if new is better
  {
    for (j = score.Length-1; j > mark; j--) 
    {
      score[j] = score[j-1];
      name[j] = name[j-1];
    }
    score[mark] = newScore; 
    name[mark] = newName;
  }
}

High Score System



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

void add_score(int newScore, string newName)
{
  int mark; //index of "marked” entry
  int j; //index used to move entries down
  mark = 0;
  while (mark <= score.Length-1 && 
         score[mark] >= newScore) mark++;
  if (mark <= score.Length-1)  //only if new is better
  {
    for (j = score.Length-1; j > mark; j--) 
    {
      score[j] = score[j-1];
      name[j] = name[j-1];
    }
    score[mark] = newScore; 
    name[mark] = newName;
  }
}

High Score System

Use print_scores and add_score
in a program that will store a 
name and score on a form, and 
then add the name / score if a 
button is clicked, and show 
current scores if another 
button is clicked


