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recap: Arrays
const int numScores = 10;

int [] score = new int[numScores];
string [] name = new string[numScores];
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recap: Arrays
const int numScores = 10;

int [] score = new int[numScores];
string [] name = new string[numScores];

numScores
elements in
both arrays

always points
to element
indexed as 0

always points
to element
indexed as 0
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recap: Arrays

 How do we work with elements in the
array?

int i, total;

total = 0;
for (i = 0; i < numScores; i++)
{

//do what we want to with element i
total += score[i];  //for example

}
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recap: Arrays

 Alternative
int i, total;

total = 0;
i = 0;
while (i < numScores)
{

//do what we want to with element i
total += score[i];  //for example
i++;

}
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A new kind of loop

 Another (very safe) construct for loops.

int total;

total = 0;
foreach (int scoreValue in score)
{

//do what we want to with element
total += scoreValue;  //for example

}



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

A new kind of loop

 Another (very safe) construct for loops.

int total;

total = 0;
foreach (int scoreValue in score)
{

//do what we want to with element
total += scoreValue;  //for example

}

type must match type of each element in
the array - the variable is local to the loop
and can have any name

it is the element in the array - not the index of
the element

element cannot
appear on the
left of the =



Two Dimensional Arrays
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Two-Dimensional Arrays

 A very common data structure is a 2-D
array.  A mathematical matrix is a good
example.

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

traditionally ai,j where
i gives the row and j
gives the column



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4
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Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 r1

a2,1 a2,2 a2,3 a2,4 r2

a3,1 a3,2 a3,3 a3,4 r3

c1 c2 c3 c4

The first thing to
realize is we are
trying to calculate
elements of two
new 1-D arrays,
r and c.  Each
element of r and
each element of c
is an integer.
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Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 r1 = a1,1+a1,2+a1,3+a1,4

a2,1 a2,2 a2,3 a2,4 r2 = a2,1+a2,2+a2,3+a2,4

a3,1 a3,2 a3,3 a3,4 r3 = a3,1+a3,2+a3,3+a3,4

c1 c2 c3 c4
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Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4    ri = ai,1+ai,2+ai,3+ai,4

a3,1 a3,2 a3,3 a3,4

c1 c2 c3 c4
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Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4    ri = 0
a3,1 a3,2 a3,3 a3,4    for j = 1,2,..,4

      ri = ri + ai,j

c1 c2 c3 c4
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Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4    ri = 0
a3,1 a3,2 a3,3 a3,4    for j = 1,2,..,4

      ri = ri + ai,j

c1 c2 c3 c4 So, what about c?
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Two-Dimensional Arrays

 Total each row and each column?
a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4    ri = 0
a3,1 a3,2 a3,3 a3,4    for j = 1,2,..,4

      ri = ri + ai,j

for j = 1,2,..,4
   cj = 0
   for i = 1,..,3
      cj = cj + ai,j
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Two-Dimensional Arrays

 Total each row and each column?
a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4    ri = 0
a3,1 a3,2 a3,3 a3,4    for j = 1,2,..,4

      ri = ri + ai,j

for j = 1,2,..,4
   cj = 0
   for i = 1,..,3
      cj = cj + ai,j

These are called
nested loops
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Two-Dimensional Arrays

 Before we see how we implement 2-D
arrays in C# - a simple question.

 Are these two algorithms equal?

for j = 1,2,..,4  for k = 1,2,..,4
   cj = 0     ck = 0
   for i = 1,..,3     for r = 1,..,3
      cj = cj + ai,j                 ck = ck + ar,k
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Two-Dimensional Arrays

 Before we see how we implement 2-D
arrays in C# - a simple question.

 Are these two algorithms equal?

for j = 1,2,..,4  for k = 1,2,..,4
   cj = 0     ck = 0
   for i = 1,..,3     for r = 1,..,3
      cj = cj + ai,j                 ck = ck + ar,k

Yes they are!  The names of the indices are irrelevant - they are
often called “dummy indices”.  Step through the algorithms to see …
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Two-Dimensional Arrays

 We can also generalize the algorithms for
n rows and m columns, for example

    Sum columns Sum rows
for j = 1,2,..,m  for i = 1,2,..,n
   cj = 0     ri = 0
   for i = 1,2,..,n     for j = 1,2,..,m
      cj = cj + ai,j                 ri = ri + ai,j
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Two-Dimensional Arrays

 The only new concept really is how to
declare multi-dimension arrays.

 We declare our 2-D array by:
const int m = 4;
const int n = 3;

int [ , ] a = new int [n, m];
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Two-Dimensional Arrays
 Then we implement the algorithm:

for j = 1,2,..,m
   cj = 0
   for i = 1,2,..,n
      cj = cj + ai,j

const int m = 4;
const int n = 3;
int [ , ] a = new int [n, m];
int [] c = new int[m];
//assume values entered in a
for (j = 0; j < m; j++)
{
   c[j] = 0;
   for (i = 0; i < n; i++)
   {
      c[j] += a[i,j]
   }
}

Adding the rows
is obviously
very similar - try
it yourself



Complex Conditions
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recap: Conditions

 Write a program that determines if an
integer year is a leap year.

 What conditions are there on being a leap
year?
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recap: Conditions

 Write a program that determines if an
integer year is a leap year.

 For a year to be a leap year:
 It must be divisible by 4
 It must not be divisible by 100
 However, if it is divisible by 100 and 400 it is a

leap year
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Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Leap Year

Not Leap Year

Not Leap Year

Leap Year
No

Yes

No

Complex Conditions
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private void button1_Click(object sender, EventArgs e)
{
   int year = Convert.ToInt32(inputBox.Text);
   if ((year % 4) == 0){
      if ((year % 100) == 0){
         if ((year % 400) == 0){
            outputBox.Text = "Leap Year";
         }else {
            outputBox.Text = "Not Leap Year";
         }
      }else {
         outputBox.Text = "Leap Year";
      }
   }else {
      outputBox.Text = "Not Leap Year";
   }
}

Complex Conditions

it’s a bit of
a mess 

alternative convention (saves space)
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Complex Conditions

 One big problem is that there are multiple
paths to get to the same result.

 Another is that we have unnecessarily
nested if statements.

 This is a good example of why we need to
work on analysis and design before
coding.
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Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Leap Year

Not Leap Year

Not Leap Year

Leap Year
No

Yes

No

Step 1. Remove duplicate outputs

Complex Conditions
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Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Step 1. Remove duplicate outputs

Complex Conditions
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The Magic Condition

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Step 2. Combine multiple conditions 
into one larger one. 

Yes

No

Complex Conditions

Try and make
a single condition
in here
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Complex Conditions

 How do we determine what the Magic
Condition is?

 Look for the routes that make the
condition true.
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Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Route 1.

Complex Conditions
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Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Route 2.

More Complex Conditions



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

More Complex Conditions

 We need to map our way through each
individual route and determine what it
takes for it to be true.

 Each individual condition needs to be
grouped with && (and) because we need
all the conditions in the route to be
satisfied.

 If we take the no branch of a condition, we
need to put a ! in front of it.



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Route 1.
(year % 4 == 0) && !(year % 100 == 0)
(year divisible by 4) and not (year divisible
by 100)

Complex Conditions
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Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Route 2.
(year % 4 ==0) && (year % 100 == 0) && 
(year % 400 ==0)

Complex Conditions

(year divisible by 4) and
(year divisible by 100) and
(year divisible by 400)
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 Since either route could result in a leap
year we can say that to get a leap year we
must have that route1 or route2 is true.

 Or is represented by ||

((year % 4 == 0) && (year % 100 != 0)) ||
((year % 4 == 0) && (year % 100 == 0) && 
 (year % 400 == 0))

Complex Conditions
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Complex Conditions

 We can look at the routes differently to
make this simpler.

 The first decision box is part of two routes.
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Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Common.
Route 1.
Route 2. 

Complex Conditions
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 We can look at the routes differently to
make this a little simpler.

 Both successful routes have to go through
the divisible by 4 box.

(year % 4 == 0) &&
((year % 100 != 0) || 
 ((year % 100 == 0) && (year % 400 == 0)))

Route 1. 

Route 2. 

Complex Conditions

Common. 
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Complex Conditions

 There is one more simplification.

 (year % 100 == 0) is redundant. Why?

(year % 4 == 0) &&
((year % 100 != 0) || 
 ((year % 100 == 0) && (year % 400 == 0)))
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Complex Conditions

 So it comes down to this!

 and we can implement this very clearly in
our code.

(year % 4 == 0) &&
((year % 100 != 0) || (year % 400 == 0))
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private void button1_Click(object sender, EventArgs e)
{
   int year = Convert.ToInt32(inputBox.Text);

   if ((year % 4 == 0)&&
((year % 100 != 0) || (year % 400 == 0)))

   {
      outputBox.Text = "Leap Year";
   } else 
   {
      outputBox.Text = "Not Leap Year";
   }
}

Complex Conditions

much better 
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private void button1_Click(object sender, EventArgs e)
{
   int year = Convert.ToInt32(inputBox.Text);

   if ((year % 4 == 0)&&
((year % 100 != 0) || (year % 400 == 0)))

   {
      outputBox.Text = "Leap Year";
   } else 
   {
      outputBox.Text = "Not Leap Year";
   }
}

Complex Conditions


