Two Dimensional Arrays and
Complex Conditions

Engineering 1D04, Teaching
Session 6

Recap Arrays

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

recap: Arrays

const int numScores = 10;

int [] score = new int[numScores];
string [] name = new string[numScores];

Score name

—}—[101 1 - (Bob”)
814 CAndrew”)
520 @arie-LouiseD
337 (Marianne™

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

recap: Arrays

const int numScores = 10;

int [] score = new int[numScores];
string [] name = new string[numScores];

Score name

], .

// 814 7 -CAndrew)
520 - (Marie-LouiseD
. always points
T[O element indexed as 0
indexed as 0
numScores
elements in

both arrays

v

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

recap: Arrays

= How do we work with elements in the
array?

int 1, total;

total = 0;
for (1 = 0; i < numScores; i++)

{

//do what we want to with element 1
total += score[i]; //for example

ZC;77

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

recap: Arrays

= Alternative

int 1, total;

total = 0;
i=20;
while (i < numScores)

{

total += scorel[1i];
1++;

//do what we want to with element 1

//for example

7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

5

A new kind of loop

= Another (very safe) construct for loops.

int total;

total = 0;
foreach (int scoreValue in score)

{

//do what we want to with element
total += scoreValue; //for example

ZC;77

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

A new kind of loop

= Another (very safe) construct for loops.

type must match type of each element in

the array - the variable is local to the loop

int total; and can have any name

element car
total = Of _ appear on tl
foreach (int scoreValue in score) |eft of the =

//do what we wa to with element
total += scoreValue; //for example

INot
ne

, e

it is the element in the array - not the index of 7

the element

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

Two Dimensional Arrays

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Two-Dimensional Arrays

= A very common data structure is a 2-D
array. A mathematical matrix is a good
example.

di1 QAqp Qdq3 4dqy . i
traditionally a;; where
dpq dpp dp3 dp4 | gives the row and |

ives the column
d3q1 dzp dgz3 dzg J

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Two-Dimensional Arrays

» | et us assume that we have an array of this
form, where each element is an integer.

= What algorithm could we construct to total
each row and each column?

dyq1 dqp dq3 dqg

dpq1 dpo dpaz dyy
d3q1 dzo dgzaz dzyg

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

Two-Dimensional Arrays

» | et us assume that we have an array of this
form, where each element is an integer.

= What algorithm could we construct to total
each row and each column?

a1 1 a1 2 a1 3 a1 4 I’1 The first thlng to
’ ’ ’ ’ realize is we are
dpq1 dyp dy3 doy I trying to calculate

elements of two
new 1-D arrays,
rand c. Each
C C C C element of r and

1 2 3 4
each element of ¢
IS an integer.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

d3q1 dzp dzz dzg I3

Two-Dimensional Arrays

» | et us assume that we have an array of this
form, where each element is an integer.

= What algorithm could we construct to total
each row and each column?

dyq1 dqo dqg3

dyq1 dpo dj3
d3q1 dzo dz3

Cy Co Cs

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

dq 4
dy 4
ds 4

C4

ry =aqta ta, 3+a 4
I, = ay (ta,,tasst+as 4
;3 = aj (tasz,tazstaszy

12

Two-Dimensional Arrays

» | et us assume that we have an array of this
form, where each element is an integer.

= What algorithm could we construct to total

each row and each column?

dyq1 dqo dqg3

dyq1 dpo dj3
d3q1 dzo dz3

Cy Co Cs

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

dq 4
dy 4
ds 4

C4

fori=1,..,3
=3a;4%a;,%ta,3%a; 4

13

Two-Dimensional Arrays

» | et us assume that we have an array of this

form, where each element is an integer.
= What algorithm could we construct to total

each row and each column?

dyq1 dqo dqg3

dyq1 dpo dj3
d3q1 dzo dz3

Cy Co Cs

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

dq 4
dy 4
ds 4

C4

fori=1,..,3
A =0
forj=1,2,..,4

14

Two-Dimensional Arrays

» | et us assume that we have an array of this

form, where each element is an integer.
= What algorithm could we construct to total

each row and each column?

dyq1 dqo dqg3

dyq1 dpo dj3
d3q1 dzo dz3

Cy Co Cs

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

dq 4
dy 4
ds 4

C
4 — So, what about ¢c?

fori=1,..,3
A =0
forj=1,2,..,4

15

Two-Dimensional Arrays

= Total each row and each column?

a;1 Qo ay3 agu tori =1,..,3
8y1 @y a3 a4 || =0
31 @z, 833 az, || forj=12,.,4

_tri=ri+ai,j
forj=1,2,..,4
G = 0
fori=1,..,3
_LCJ=Cj+ai,j

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

Two-Dimensional Arrays

= Total each row and each column?

a;1 Qo ay3 agu tori =1,..,3
8y1 @y a3 a4 || =0

31 @z, 833 az, || forj=12,.,4
i tri =1+ @,

forj=1,2,..,4
A Cj =0 \> These are called
fori=1,..3 «— nested loops

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

Two-Dimensional Arrays

= Before we see how we implement 2-D
arrays in C# - a simple question.

» Are these two algorithms equal?

forj=1,2,..,4 fork=1,2,..4
¢, =0 c,=0
fori=1,..,3 forr=1,..,3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

Two-Dimensional Arrays

= Before we see how we implement 2-D
arrays in C# - a simple question.
» Are these two algorithms equal?

Yes they are! The names of the indices are irrelevant - they are
often called "dummy indices”. Step through the algorithms to see ...

forj=1,2,..,4 fork=1,2,.4
¢, =0 c,=0
fori=1,..,3 forr=1,..,3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

Two-Dimensional Arrays

= \WWe can also generalize the algorithms for
n rows and m columns, for example

Sum columns Sum rows
forj=1,2,...m fori=1,2,...n
Aq=0 An=0
fori=1,2,...n forj=1,2,..,m
_tc:j=cj+ai,j 1 =t

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

20

Two-Dimensional Arrays

= The only new concept really is how to
declare multi-dimension arrays.

= We declare our 2-D array by:

const int m
const int n

4;
3;

new int [n, m];

int [,] a
e

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

21

Two-Dimensional Arrays

* Then we implement the algorlthm

forj=1,2,..,m
c,=0
fori=1,2,..,n

Adding the rows
IS obviously
very similar - try
it yourself

const int m 4;

const int n 3;

int [,] a new int [n, m];
int [] ¢ = new int[m];
//assume values entered in a
for (J = 0; j < m; J++)

{

c[j] = O;
for (i = 0; 1 < n; i++)
{
c[j] += a[i,]]
}

| 7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

23

recap: Conditions

= Write a program that determines if an
integer year is a leap year.

* \What conditions are there on being a leap
year?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

recap: Conditions

= Write a program that determines if an
integer year is a leap year.

* For a year to be a leap year:
* It must be divisible by 4
* It must not be divisible by 100

e However, if it is divisible by 100 and 400 it is a
eap year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

Complex Conditions

|

No
Divisible by 47?

Not Leap Year

Yes Yes

Not Leap Year

Divisible by 100? > — > <{Divisible by 4007?

|No

» | Leap Year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

» | Leap Year

26

Complex Conditions

private void buttonl Click (object sender, EventArgs e)

{

int year = Convert.TolInt32 (inputBox.Text) ;

if ((year % 4) == 0){ «<— alternative convention (saves space)
if ((year % 100) == 0) {
if ((year % 400) == 0) {
outputBox.Text = "Leap Year'";
}else {

outputBox.Text "Not Leap Year";

}

}elset{ o Text . g it's a bit of
outputBox.Text = "Lea ear";
\ P P a mess ®
}else {

outputBox.Text = "Not Leap Year'";

_ L

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

Complex Conditions

* One big problem is that there are multiple
paths to get to the same result.

= Another is that we have unnecessarily
nested if statements.

» This is a good example of why we need to
work on analysis and design before
coding.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Complex Conditions

l Step 1. Remove duplicate outputs

No

Divisible by 47

Not Leap Year

Yes Yes

Not Leap Year

Divisible by 100? > ——»

Divisible by 4007

|No

» | Leap Year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

» | Leap Year

29

Complex Conditions

l Step 1. Remove duplicate outputs

No
Divisible by 47?

» | Not Leap Year

Yes Yes

Divisible by 100? > — > <{Divisible by 4007?

|No

» | Leap Year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

30

Complex Conditions

l Step 2. Combine multiple conditions

Try and make into one larger one.

a single condition

In here

Divisible by 47> NO . | Not Leap Year

The Magic Condition

Divisible by 1007 Divisible by 4007

» | Leap Year

© Copyright 2006 David Das,

31

Complex Conditions

= How do we determine what the Magic
Condition is?

= | ook for the routes that make the
condition true.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Complex Conditions

l Route 1.

No
Divisible by 47?

» | Not Leap Year

Yes Yes

Divisible by 100? > — > <{Divisible by 4007?

|No

» | Leap Year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

33

More Complex Conditions

l Route 2.

No

Divisible by 47

Yes Yes

Divisible by 1007 > =———3 < Divisible by 4007?

|No

Not Leap Year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

>

Leap Year

34

More Complex Conditions

= We need to map our way through each
individual route and determine what it
takes for it to be true.

= Each individual condition needs to be
grouped with && (and) because we need
all the conditions in the route to be
satisfied.

= |[f we take the no branch of a condition, we
need to put a !lin front of it.

aa

Complex Conditions

Route 1.

(year % 4 == 0) && !(year % 100 == 0)
(year divisible by 4) and not (year divisible
by 100)

No

Divisible by 47? » |Not Leap Year

Yes Yes

Divisible by 100? > ——»

Divisible by 4007

|No

» | Leap Year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

Complex Conditions

Route 2.
(year % 4 ==0) && (year % 100 == 0) &&
(year % 400 ==0)

No
Divisible by 47?

» | Not Leap Year

(year divisible by 4) and
(year divisible by 100) and
* No (year divisible by 400)

Yes Yes

Divisible by 1007 > =———3 < Divisible by 4007?

|No

> » Leap Year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

Complex Conditions

= Since either route could result in a leap
year we can say that to get a leap year we
must have that route1 or route2 is true.

((year % 4 == 0) && (year % 100 !=0)) ||
((year % 4 == 0) && (year % 100 == 0) &&
(year % 400 == 0))

= Or is represented by ||

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Complex Conditions

= \WWe can look at the routes differently to
make this simpler.

*= The first decision box is part of two routes.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Complex Conditions

l

Common.
Route 1.
Route 2.

No
Divisible by 47?

Yes Yes

Divisible by 1007 > =———3 < Divisible by 4007?

|No

Not Leap Year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

» Leap Year

40

Complex Conditions

= \WWe can look at the routes differently to
make this a little simpler.

= Both successful routes have to go through
the divisible by 4 box.

Common.
W Route 1.

(year % 4 == 0) &&
((year % 100 !=0) ||
((year % 100 == 0) && (year % 400 == 0)))

\ Route 2.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Complex Conditions

= There is one more simplification.

= (year % 100 == 0) is redundant. Why?

(year % 4 == 0) &&
((year % 100 = 0) ||
((year % 100 == 0) && (year % 400 == 0)))

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Complex Conditions

= So it comes down to this!

(year % 4 == 0) &&
((year % 100 !'= 0) || (year % 400 == 0))

= and we can implement this very clearly Iin
our code.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

43

Complex Conditions

private void buttonl Click (object sender, EventArgs e)

{

int year

if ((year % 4 == 0)&&
((year % 100 != 0) || (year % 400 ==

{
outputBox.Text
} else

{

"Leap Year";

outputBox.Text "Not Leap Year";

Convert.ToInt32 (inputBox.Text) ;

0)))

much better ©

=

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

44

Complex Conditions

private void buttonl Click (object sender, EventArgs e)
{

int year = Convert.ToInt32 (inputBox.Text) ;

if ((year % 4 == 0)&é&
((year % 100 !'= 0) || (yes
{
outputBox.Text = "Leap Yes&
} else Input

{

outputBox.Text = "Not Leap Uutrut |leapYear

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

