
Two Dimensional Arrays and
Complex Conditions

Engineering 1D04, Teaching
Session 6

Recap Arrays

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

recap: Arrays
const int numScores = 10;

int [] score = new int[numScores];
string [] name = new string[numScores];

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

recap: Arrays
const int numScores = 10;

int [] score = new int[numScores];
string [] name = new string[numScores];

numScores
elements in
both arrays

always points
to element
indexed as 0

always points
to element
indexed as 0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

recap: Arrays

 How do we work with elements in the
array?

int i, total;

total = 0;
for (i = 0; i < numScores; i++)
{

//do what we want to with element i
total += score[i]; //for example

}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

recap: Arrays

 Alternative
int i, total;

total = 0;
i = 0;
while (i < numScores)
{

//do what we want to with element i
total += score[i]; //for example
i++;

}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

A new kind of loop

 Another (very safe) construct for loops.

int total;

total = 0;
foreach (int scoreValue in score)
{

//do what we want to with element
total += scoreValue; //for example

}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

A new kind of loop

 Another (very safe) construct for loops.

int total;

total = 0;
foreach (int scoreValue in score)
{

//do what we want to with element
total += scoreValue; //for example

}

type must match type of each element in
the array - the variable is local to the loop
and can have any name

it is the element in the array - not the index of
the element

element cannot
appear on the
left of the =

Two Dimensional Arrays

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

Two-Dimensional Arrays

 A very common data structure is a 2-D
array. A mathematical matrix is a good
example.

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

traditionally ai,j where
i gives the row and j
gives the column

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 r1

a2,1 a2,2 a2,3 a2,4 r2

a3,1 a3,2 a3,3 a3,4 r3

c1 c2 c3 c4

The first thing to
realize is we are
trying to calculate
elements of two
new 1-D arrays,
r and c. Each
element of r and
each element of c
is an integer.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 r1 = a1,1+a1,2+a1,3+a1,4

a2,1 a2,2 a2,3 a2,4 r2 = a2,1+a2,2+a2,3+a2,4

a3,1 a3,2 a3,3 a3,4 r3 = a3,1+a3,2+a3,3+a3,4

c1 c2 c3 c4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4 ri = ai,1+ai,2+ai,3+ai,4

a3,1 a3,2 a3,3 a3,4

c1 c2 c3 c4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4 ri = 0
a3,1 a3,2 a3,3 a3,4 for j = 1,2,..,4

 ri = ri + ai,j

c1 c2 c3 c4

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

Two-Dimensional Arrays

 Let us assume that we have an array of this
form, where each element is an integer.

 What algorithm could we construct to total
each row and each column?

a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4 ri = 0
a3,1 a3,2 a3,3 a3,4 for j = 1,2,..,4

 ri = ri + ai,j

c1 c2 c3 c4 So, what about c?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

Two-Dimensional Arrays

 Total each row and each column?
a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4 ri = 0
a3,1 a3,2 a3,3 a3,4 for j = 1,2,..,4

 ri = ri + ai,j

for j = 1,2,..,4
 cj = 0
 for i = 1,..,3
 cj = cj + ai,j

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

Two-Dimensional Arrays

 Total each row and each column?
a1,1 a1,2 a1,3 a1,4 for i = 1,..,3
a2,1 a2,2 a2,3 a2,4 ri = 0
a3,1 a3,2 a3,3 a3,4 for j = 1,2,..,4

 ri = ri + ai,j

for j = 1,2,..,4
 cj = 0
 for i = 1,..,3
 cj = cj + ai,j

These are called
nested loops

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

Two-Dimensional Arrays

 Before we see how we implement 2-D
arrays in C# - a simple question.

 Are these two algorithms equal?

for j = 1,2,..,4 for k = 1,2,..,4
 cj = 0 ck = 0
 for i = 1,..,3 for r = 1,..,3
 cj = cj + ai,j ck = ck + ar,k

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

Two-Dimensional Arrays

 Before we see how we implement 2-D
arrays in C# - a simple question.

 Are these two algorithms equal?

for j = 1,2,..,4 for k = 1,2,..,4
 cj = 0 ck = 0
 for i = 1,..,3 for r = 1,..,3
 cj = cj + ai,j ck = ck + ar,k

Yes they are! The names of the indices are irrelevant - they are
often called “dummy indices”. Step through the algorithms to see …

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

Two-Dimensional Arrays

 We can also generalize the algorithms for
n rows and m columns, for example

 Sum columns Sum rows
for j = 1,2,..,m for i = 1,2,..,n
 cj = 0 ri = 0
 for i = 1,2,..,n for j = 1,2,..,m
 cj = cj + ai,j ri = ri + ai,j

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

Two-Dimensional Arrays

 The only new concept really is how to
declare multi-dimension arrays.

 We declare our 2-D array by:
const int m = 4;
const int n = 3;

int [,] a = new int [n, m];

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

Two-Dimensional Arrays
 Then we implement the algorithm:

for j = 1,2,..,m
 cj = 0
 for i = 1,2,..,n
 cj = cj + ai,j

const int m = 4;
const int n = 3;
int [,] a = new int [n, m];
int [] c = new int[m];
//assume values entered in a
for (j = 0; j < m; j++)
{
 c[j] = 0;
 for (i = 0; i < n; i++)
 {
 c[j] += a[i,j]
 }
}

Adding the rows
is obviously
very similar - try
it yourself

Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

recap: Conditions

 Write a program that determines if an
integer year is a leap year.

 What conditions are there on being a leap
year?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

recap: Conditions

 Write a program that determines if an
integer year is a leap year.

 For a year to be a leap year:
 It must be divisible by 4
 It must not be divisible by 100
 However, if it is divisible by 100 and 400 it is a

leap year

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Leap Year

Not Leap Year

Not Leap Year

Leap Year
No

Yes

No

Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

private void button1_Click(object sender, EventArgs e)
{
 int year = Convert.ToInt32(inputBox.Text);
 if ((year % 4) == 0){
 if ((year % 100) == 0){
 if ((year % 400) == 0){
 outputBox.Text = "Leap Year";
 }else {
 outputBox.Text = "Not Leap Year";
 }
 }else {
 outputBox.Text = "Leap Year";
 }
 }else {
 outputBox.Text = "Not Leap Year";
 }
}

Complex Conditions

it’s a bit of
a mess 

alternative convention (saves space)

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 28

Complex Conditions

 One big problem is that there are multiple
paths to get to the same result.

 Another is that we have unnecessarily
nested if statements.

 This is a good example of why we need to
work on analysis and design before
coding.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Leap Year

Not Leap Year

Not Leap Year

Leap Year
No

Yes

No

Step 1. Remove duplicate outputs

Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Step 1. Remove duplicate outputs

Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

The Magic Condition

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Step 2. Combine multiple conditions
into one larger one.

Yes

No

Complex Conditions

Try and make
a single condition
in here

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

Complex Conditions

 How do we determine what the Magic
Condition is?

 Look for the routes that make the
condition true.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Route 1.

Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Route 2.

More Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

More Complex Conditions

 We need to map our way through each
individual route and determine what it
takes for it to be true.

 Each individual condition needs to be
grouped with && (and) because we need
all the conditions in the route to be
satisfied.

 If we take the no branch of a condition, we
need to put a ! in front of it.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Route 1.
(year % 4 == 0) && !(year % 100 == 0)
(year divisible by 4) and not (year divisible
by 100)

Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Route 2.
(year % 4 ==0) && (year % 100 == 0) &&
(year % 400 ==0)

Complex Conditions

(year divisible by 4) and
(year divisible by 100) and
(year divisible by 400)

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

 Since either route could result in a leap
year we can say that to get a leap year we
must have that route1 or route2 is true.

 Or is represented by ||

((year % 4 == 0) && (year % 100 != 0)) ||
((year % 4 == 0) && (year % 100 == 0) &&
 (year % 400 == 0))

Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

Complex Conditions

 We can look at the routes differently to
make this simpler.

 The first decision box is part of two routes.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

Divisible by 4?

Yes

No

Divisible by 100? Divisible by 400?
Yes

Not Leap Year

Leap Year
No

Yes

No

Common.
Route 1.
Route 2.

Complex Conditions

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

 We can look at the routes differently to
make this a little simpler.

 Both successful routes have to go through
the divisible by 4 box.

(year % 4 == 0) &&
((year % 100 != 0) ||
 ((year % 100 == 0) && (year % 400 == 0)))

Route 1.

Route 2.

Complex Conditions

Common.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

Complex Conditions

 There is one more simplification.

 (year % 100 == 0) is redundant. Why?

(year % 4 == 0) &&
((year % 100 != 0) ||
 ((year % 100 == 0) && (year % 400 == 0)))

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 43

Complex Conditions

 So it comes down to this!

 and we can implement this very clearly in
our code.

(year % 4 == 0) &&
((year % 100 != 0) || (year % 400 == 0))

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

private void button1_Click(object sender, EventArgs e)
{
 int year = Convert.ToInt32(inputBox.Text);

 if ((year % 4 == 0)&&
((year % 100 != 0) || (year % 400 == 0)))

 {
 outputBox.Text = "Leap Year";
 } else
 {
 outputBox.Text = "Not Leap Year";
 }
}

Complex Conditions

much better 

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

private void button1_Click(object sender, EventArgs e)
{
 int year = Convert.ToInt32(inputBox.Text);

 if ((year % 4 == 0)&&
((year % 100 != 0) || (year % 400 == 0)))

 {
 outputBox.Text = "Leap Year";
 } else
 {
 outputBox.Text = "Not Leap Year";
 }
}

Complex Conditions

