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 using System.IO;

File I/O

 For anything in this session to work
correctly, you need to include the File I/O
Library.

 This can be done by adding the following
line at the top of your C# program with the
rest of the using statements.
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File I/O

 Problem: Find the distribution of grade
points from 1D04 last year, i.e. How many
people received each grade point?
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Grade Point

File I/O

 With this data, we should be able to
produce a chart like this:
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File I/O

 There were 800 people in 1D04 last year.
This is a lot of data to enter manually - if
we have the grades already stored in a
computer readable form.

 When large amounts of data need to be
used in a computer program it is essential
to be able to import this data from a file.
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File I/O

 In this example, a sample file has been
prepared called grades.yyz.

 Each line has a number from 0-12
corresponding to the McMaster Grade
Scale.

 Student names are not included.
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File I/O

 Extract from the
grade file
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File I/O

 Develop an algorithm to solve this
problem?
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array

indices

File I/O - Solution

 We can use an array, with each index in
the array representing a grade point.
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 Each location will represent how many
people scored that grade.

 We need to zero each location as we have
not read in any grades yet.

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

array

indices

Why?

File I/O - Solution
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Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.

That is why we zero 
the elements first



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

se
qu

en
ce

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 1 0 0 0 0 1 0 0 0 0

index

Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.
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Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.
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Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.
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Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

File I/O - Algorithm

 Create and zero an array of 13 elements
for grade points.

 Input one grade from the grade file.
 Increment the respective location in the

grade point array.
 Repeat until all grades have been used.
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void findGradeDistribution(){
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;

   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O - Declarations
 Streams are used to work with files.
 A stream is simply a name for a flow of data.
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void findGradeDistribution(){
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;

   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O - Declarations
 Streams are used to work with files.
 A stream is simply a name for a flow of data.

This opens the stream for reading

name of stream
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void findGradeDistribution(){
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;

   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O - Declarations
 The filename associated with the stream is a string passed as a

parameter inside ()’s when creating a new stream.
 To make it easier right now, the file needs to be in the working

directory for your program.
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File I/O - Declarations

 In Visual Studio, the working directory for
an application is:
 projectFolder\ProjectName\bin\Debug

 Example:
 C:\Documents and Settings\username\
      My Documents\Visual Studio 2005\Projects\

   gradeThingy\gradeThingy\bin\Debug
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void findGradeDistribution(){
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;

   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.
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void findGradeDistribution(){
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;

   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.

why?
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void findGradeDistribution(){
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;

   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.

why?

assumption
(at least 1)
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void findGradeDistribution(){
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;

   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.
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void findGradeDistribution(){
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;

   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.
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Create and zero an array of 13
elements for grade points.

Input one grade from
the grade file.

Increment the
respective location in
the grade point array.

2

3

1

4

Why doesn't
our C# loop
look like this? Is there

another grade
in the file?

Loop Visualization
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Create and zero an array of 13
elements for grade points.

Input one grade from
the grade file.

Increment the
respective location in
the grade point array.

2

3

1

4

In C#, we can't
ask the question
Is there another
grade in the file?

Instead, we can
ask the question
Does the last
grade we
attempted to
read, exist?

Is there
another grade

in the file?

Loop Visualization
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Loop Visualization
Create and zero an array of 13
elements for grade points.

Input one grade from
the grade file.

Increment the
respective location in
the grade point array.

Does the last grade we
attempted to read, exist?

2

3

1

4

We have to
adjust the loop
slightly to
accommodate
this new
question.

Input one grade from
the grade file.

3
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void findGradeDistribution(){
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;

   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O
 inStream.ReadLine() is where all the magic happens.
 inStream.ReadLine() returns a string value of the next unread line

unless there are no more unread lines in which case it returns null.



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

. . .
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;
. . . 

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

File I/O - Animation
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. . .
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;
. . . 8
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File I/O - Animation

grades.yyz
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. . .
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;
. . . 

inputString

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

File I/O - Animation

grades.yyz
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. . .
   int[] gradeDistribution = new int[13];
   StreamReader inStream = new StreamReader("grades.yyz");
   string inputString;
   int inputInt;
. . . 

inputString inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"8"

inputInt
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0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"8"

inputInt
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0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

True

File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"8"

inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"8"

inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . .

inputString

"3"

inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . .

inputString

"3"

inputInt
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True

File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"3"

inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . .

inputString

"3"

inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"1"

inputInt

1
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0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 2 0 0 1 0 3 1 0 0 1

Magically Skipping Steps

File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"1"

inputInt
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0 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"0"

inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"0"

inputInt
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File I/O - Animation

grades.yyz

True
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"0"

inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"0"

inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

"0"

inputInt
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File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . .

inputString

null

inputInt

0
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1 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz
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inputString = inStream.ReadLine();
while (inputString != null){
   inputInt = Convert.ToInt32(inputString);
   gradeDistribution[inputInt]++;
   inputString = inStream.ReadLine();
}
. . . 

inputString

null

inputInt

0

8
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False

0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz
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. . .
   inputString = inStream.ReadLine();
   while (inputString != null){
      inputInt = Convert.ToInt32(inputString);
      gradeDistribution[inputInt]++;
      inputString = inStream.ReadLine();
   }
   inStream.Close();
}

File I/O

 Streams always need to be closed when
they are finished being used.

 If they don’t get closed, unexpected
results may appear in the files that are
being accessed.
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Output to Data File

 Now that our program knows the
distribution of grades from our input file, it
would be nice to produce a graph.

 Graphs are not simple to produce.
 However, we can easily output our data to

a file and open it in Excel. With just a few
clicks in Excel, a graph can be created.
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Output to Data File

 What information do I want to put in the
file?

 What format do I need to use?
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Output to Data File

 What information do I want to put in the file?
 The grade points
 The number of students with each grade point.

 What format do I need to use?
 A file that is tab delimited is easily accessed in

Excel.
• In this case, tab delimited means that the tab

character separates entries on any line,
• i.e. grade_point_average tab number_of_students
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Algorithm for Output to File

 Run previously developed program.
 Start at beginning of grade point array
 Print a line in a file that reads:

 arrayIndex arrayContents
• Where arrayIndex is the index of grade point array.
• arrayContents is the numerical value in that index.
• arrayIndex and arrayContents are separated by a

tab.

 Loop through grade point array until all
grade points have been written to the file.
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. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
   outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 Run previously developed program.
 Start at beginning of grade point array.
 Print a line in a file that reads:

 arrayIndex arrayContents
 Loop through grade point array until all grade points have

been written to the file.
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. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
   outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 This declares an output stream.
 It creates a file called "output.txt" in the application's

working directory.
 We can write strings to this output stream in the same way

we have used strings in message boxes for example.
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. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
   outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 Run previously developed program.
 Start at beginning of grade point array.
 Print a line in a file that reads:

 arrayIndex arrayContents
 Loop through grade point array until all grade points have

been written to the file.
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. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
   outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 Run previously developed program.
 Start at beginning of grade point array.
 Print a line in a file that reads:

 arrayIndex arrayContents
 Loop through grade point array until all grade points have

been written to the file.
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. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
   outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 WriteLine() does all the magic of writing to a file.
 It writes a single string to our output file (ends with "\n").
 \t is the code for a tab.
 "\t" is a string with a tab in it
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. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
   outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 Streams must be closed when we are finished using them.
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0 1
1 1
2 0
3 2
4 0
5 0
6 1
7 0
8 3
9 1
10 0
11 0
12 1

Sample Output

 Output from Sample Input:
output.txt
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Sample Output

 If we open our file in Excel, the following
message box will appear:
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Sample Output

 Excel starts this wizard if plain text files
are opened with Excel.

 Because of our explicit delimiting of our file
with tabs, we can just click finish.
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0 1
1 1
2 0
3 2
4 0
5 0
6 1
7 0
8 3
9 1
10 0
11 0
12 1

Sample Output

And with a few clicks …

output.txt
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File I/O

 The brilliant part of file I/O like this is that it
doesn’t matter how big or small our input
file is.

 The software will read through the entire
file and create sensible output.



File Dialog Boxes

 Easy to include the normal Windows
dialogs for browsing to a specific location
to store or retrieve a file

 Can add OpenFileDialog or
SaveFileDialog by dragging from Toolbox
to the design view onto your form

 The ShowDialog() method shows the
dialog

 The FileName property gives the filename
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