File Input and Output (1/O)

Engineering 1D04, Teaching
Session 7

File I/O

* For anything in this session to work
correctly, you need to include the File I1/O
Library.

* This can be done by adding the following
line at the top of your C# program with the
rest of the using statements.

using System.IO;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File I/O

* Problem: Find the distribution of grade
points from 1D04 last year, i.e. How many
people received each grade point?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File I/O

= \With this data, we should be able to

produce a chart like this:

100
90
80
70 :

60 —HH

50] —HH |CNumber of
40 | L H Students

30 — T H T

»fhrmfH b

0 2 4 6 8 10 12
Grade Point

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

File I/O

* There were 800 people in 1D04 |ast year.
This is a lot of data to enter manually - if
we have the grades already stored in a
computer readable form.

= When large amounts of data need to be
used in a computer program it is essential
to be able to import this data from a file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File I/O

* |n this example, a sample file has been
prepared called grades.yyz.

= Each line has a number from 0-12
corresponding to the McMaster Grade
Scale.

= Student names are not included.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File I/O

= Extract from the Bgrades'yyz
grade file 3
8
6
8
3
12
9
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File I/O

= Develop an algorithm to solve this
problem?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File 1/0 - Solution

= \We can use an array, with each index In
the array representing a grade point.

indices
v
0 1 2 3 4 5 6 7 8 9 10 11 12

array

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File 1/0 - Solution

= Each location will represent how many
people scored that grade.

= \We need to zero each location as we have
not read in any grades yet. = Why?

indices

0 1 2 3 4 5 6 7 8 9 10 11 12

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding
grade point.

Increment Value by 1

That is why we zero
the elements first

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

O R OKF WO0Oo W

10

sequence

<

File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding

grade poV
index
4

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 1 0 0 0 0 1 0 0 0 0

/

Increment Value by 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

oOrRr OKF WO0Oo W

1"

sequence

<

File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding
grade point.

Increment Value by 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

O R OKF WO0Oo W

12

sequence

<

File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding
grade point.

Increment Value by 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

oOrRr OKF WO0o W o

13

sequence

<

File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding
grade point.

Increment Value by 1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

oOrRr OKRFR WOoo 0w o

14

sequence

<

File I1/O - Algorithm

= Create and zero an array of 13 elements
for grade points.

* |nput one grade from the grade file.

* Increment the respective location in the
grade point array.

= Repeat until all grades have been used.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File I/O - Declarations

= Streams are used to work with files.
= A stream is simply a name for a flow of data.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ("grades.yyz");
string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

} Z

File I/O - Declarations

= Streams are used to work with files.
= A stream is simply a name for a flow of data.

name of stream

void findGradeDistribution ()
int[] gradeDistributi = new int[13];

StreamReader inStream = new StreamReader ("grades.yyz");

string inputString;

int inputlInt; \ This opens the stream for readir

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

£~

File I/O - Declarations

= The filename associated with the stream is a string passed as a
parameter inside ()’'s when creating a new stream.

= To make it easier right now, the file needs to be in the working
directory for your program.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ("grades.yyz");
string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

} Z

File I/O - Declarations

* |n Visual Studio, the working directory for
an application is:

» projectFolder\ProjectName\bin\Debug

e Example:
* C:\Documents and Settings\username\
My Documents\Visual Studio 2005\Projects\

gradeThingy\grade Thingy\bin\Debug

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

File I/O

= Create and zero an array of 13 elements for grade points.
» |nput one grade from the grade file.

[» Increment the respective location in the grade point array.
» Repeat until there are no more grades in the file.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"'grades.yyz")

string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

£

File I/O

» Create and zero an array of 13 elements for grade points.
= Input one grade from the grade file.

[» Increment the respective location in the grade point array.
» Repeat until there are no more grades in the file.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ('"'grades.yyz")
string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString '= null) { \
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++; ‘////////////WNhy?
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

} Z

File I/O

Create and zero an array of 13 elements for grade points.

Input one grade from the grade file. <

Increment the respective location in the grade point array. \

Repeat until there are no more grades in the file. assumption
(at least 1)

void findGradeDistribution () {

int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"'grades.yyz")
string inputString;

int inputlnt;

inputString = inStream.ReadLine() ;
while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;

gradeDistribution[inputInt]++; ‘////////////WNhy?
inputString = inStream.ReadLine() ;
}

inStream.Close() ; :::;77
22

File I/O

» Create and zero an array of 13 elements for grade points.
» |nput one grade from the grade file.

[* |ncrement the respective location in the grade point array.
» Repeat until there are no more grades in the file.

void findGradeDistribution() {
int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"'grades.yyz")

string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;
while (inputString != null) {

gradeDistribution[inputInt]++;
inputString = inStream.ReadLine () ;

}

inStream.Close() ;

£

File I/O

» Create and zero an array of 13 elements for grade points.
» |nput one grade from the grade file.

[» Increment the respective location in the grade point array.
= Repeat until there are no more grades in the file.

void findGradeDistribution() {
int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"'grades.yyz")

string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString !'= null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

.

Loop Visualization
@

Create and zero an array of 13
Why doesn't elements for grade points.

our C# loop

ook like this? @ i< there

another grade
in the file? O

Input one grade from
the grade file.

Increment the
respective location in
the grade point array.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Loop Visualization
@

Create and zero an array of 13

. elements for grade points.
In C#, we can't Jrasep

ask the question
) ®

Is there another Itshthere ;
. . anotner grade
grade in the file? N the flle? 5
Input one grade from
Instead, we Can the grade file.

ask the question
Does the last
grade we
attempted to increment the
) respective location in
read, exist? the grade point array.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

26

Loop Visualization

We have to @
adjust the Ioop Create and zero an array of 13

_ ele®ents for grade points.
slightly to

dat Input one grade from

ac?commo ale @ the grade file.
this n_eW Does the last grade we
question. attempted to read, exist?

Input one grade from
the grade file.

Increment the
respective location in

the grade point array.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

27

File I/O

» inStream.ReadLine() is where all the magic happens.

» inStream.ReadLine() returns a string value of the next unread line
unless there are no more unread lines in which case it returns null.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ('"'grades.yyz")
string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString !'= null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

} Z

File I/O - Animation

int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"grades.yyz'")
string inputString;

int inputlnt;

e

0 1 2 3 4 5 6 7 8 9 10 11 12

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

File I/O - Animation

int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ("grades.yyz")
string inputString;

int inputlInt; grades.yyz
) | 8 ||
3
8
6
8
3
O 1 2 3 4 5 6 7 8 9 10 11 12 12
o/ o|o0o|O0O|O|O|O|]O|O|O|O|O|O]| /O
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30

File /O - Animation

int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ('"grades.yyz'")
string inputString;

int inputlInt; grades.yyz
— 8 |
3
inputString 8
6
8
3
o 1 2 3 4 5 6 7 8 9 10 11 12 |12
0 0 0 0 0 0 0 0 0 0 0 0 0 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

File /O - Animation

int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ('"grades.yyz'")
string inputString;

int inputlnt; grades.yyz
m— | 8 Ll
3
inputString inputInt 8
6
8
3
1 2 3 4 5 6 7 8 9 10 11 12 |12
0 0 0 0 0 0 0 0 0 0 0 0 o
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString ////////inﬁﬁffgg///////// 8
ngm e 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 0 0 0 0 0 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString '= null) { True
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
- 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 0 0 0 0 0 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
ngn 8 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 0 0 0 0 0 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

File I/O - Animation

inputString = inStream.ReadLine() ;
while (inputString != null) {

inputInt = Convert.ToInt32 (inputString) ;

gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
) 3
inputString inputInt 8
ng 8 6
8
3
o 1 2 3 4 5 6 7 8 9 10 11 12 |12
0 0 0 0 0 0 0 0 1 0 0 0 0 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

36

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ; grades.yyz

} 8 L

-3
inputString in m— | 8

w3 < 8 6
8

w

o 1 2 3 4 5 6 7 8 9 10 11 12 12

o r

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString '= null) { True
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
... 3
inputString inputInt —1 8
n3m 8 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 1 0 0 0 0 o
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
... 3
inputString inputInt —1 8
n3m 3 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 1 0 0 0 0 o
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

File I/O - Animation

inputString = inStream.ReadLine() ;
while (inputString != null) {

inputInt = Convert.ToInt32 (inputString) ;

gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
3
inputString inputInt —1 8
n3m 3 6
8
3
o 1 2 3 4 5 6 7 8 9 10 11 12 |12
0 0 0 1 0 0 0 0 1 0 0 0 0 o
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

40

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
nqn 1 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 2 0 0 1 0 3 1 0 0 1 °)
1
-O

Magically Skipping Steps V

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
- .. 3
inputString inputInt 8
nyw 1 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
- | 0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 |
... 3
inputString inputInt 8
"o" | 1 6
8
3
o 1 2 3 4 5 6 1 9 10 11 12 (12
1|/1/0|2|0|0|1]|0|3|11]0]|0]1 9
1
-0

— L]

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 43

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString '= null) { True
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
"or 1 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
o 0 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
... 3
inputString inputInt 8
K 0 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

1 1 0 2 0 0 1 0 3 1 0 0 1 o
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 46

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
- .. 3
inputString inputInt 8
K 0 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

1 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 47

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 ||
3
inputString inputInt 8
null v 0 6
8
3
0O 1 2 3 4 5 6 8 9 10 11 12 |12
1 1 0 2 0 0 1 0 310 0 °)
1
0)

)

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

48

File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString '= null) { False
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
- .. 3
inputString inputInt 8
null 0 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

1 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 49

File 1/O

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close () ;

} 7

= Streams always need to be closed when
they are finished being used.

» |[f they don’t get closed, unexpected
results may appear in the files that are
being accessed.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 50

Output to Data File

= Now that our program knows the
distribution of grades from our input file, it
would be nice to produce a graph.

= Graphs are not simple to produce.

= However, we can easily output our data to
a file and open it in Excel. With just a few
clicks in Excel, a graph can be created.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Output to Data File

= What information do | want to put in the
file?

= \What format do | need to use?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Output to Data File

= \What information do | want to put in the file?
* The grade points
* The number of students with each grade point.

» What format do | need to use?
* A file that is tab delimited is easily accessed in

Excel.

* In this case, tab delimited means that the tab
character separates entries on any line,

* i.e. grade point_average tab number_of students

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 53

Algorithm for Output to File

= Run previously developed program.
= Start at beginning of grade point array

* Print a line in a file that reads:
e arraylndex arrayContents

 Where arraylndex is the index of grade point array.

 arrayContents is the numerical value in that index.

 arraylndex and arrayContents are separated by a
tab.

= L oop through grade point array until all
grade points have been written to the file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

54

Output to Data File

= Run previously developed program.
= Start at beginning of grade point array.
* Print a line in a file that reads:

* arraylndex arrayContents

= Loop through grade point array until all grade points have
been written to the file.

StreamWriter outStream = new StreamWriter ("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++) {
outStream.WriteLine (i + "\t" + gradeDistribution[i]) ;

}

outStream.Close() ;

L=

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 55

Output to Data File

» This declares an output stream.

= |t creates a file called "output.txt" in the application's
working directory.

= \We can write strings to this output stream in the same way
we have used strings in message boxes for example.

StreamWriter outStream = new StreamWriter ("output.txt"):
for (int i = 0; i < gradeDistribution.Length; i++) {
outStream.WriteLine (i + "\t" + gradeDistribution[i]) ;

}

outStream.Close() ;

L=

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 56

Output to Data File

= Run previously developed program.
= Start at beginning of grade point array.
* Print aline in a file that reads:

* arraylndex arrayContents

= Loop through grade point array until all grade points have
been written to the file.

StreamWriter outStream = new StreamWriter ("output.txt");
for (int i = 0; i1 < gradeDistribution.Length; i++) {
outStream.WriteLine (i + "\t" + gradeDistribution[i]) ;

}

outStream.Close() ;

L=

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 57

Output to Data File

= Run previously developed program.
= Start at beginning of grade point array.
= Print a line in a file that reads:

® arraylndex arrayContents

= Loop through grade point array until all grade points have
been written to the file.

StreamWriter outStream = new StreamWriter ("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++) {
outStream.WriteLine (i + "\t" + gradeDistribution[i]);

}

outStream.Close() ;

L=

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 58

Output to Data File

= WriteLine() does all the magic of writing to a file.

» |t writes a single string to our output file (ends with "\n").

\t is the code for a tab.
= "\t" is a string with a tab in it

StreamWriter outStream = new StreamWriter ("output.txt");

for (int i = 0; i < gradeDistribution.Length; i++) {

outStream.WriteLine (i + "\t" + gradeDistribution[i]);

}

outStream.Close() ;

L=

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

59

Output to Data File

= Streams must be closed when we are finished using them.

StreamWriter outStream = new StreamWriter ("output.txt");

for (int i = 0; i < gradeDistribution.Length; i++) {

outStream.WriteLine (i + "\t" + gradeDistribution[i]) ;

}

outStream.Close () ;

L=

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

60

Sample Output

= Qutput from Sample Input:

output.txt

o

oo Jdoy Ul WNMNBK

P OORKFRFRWORKFROOMORHBRKR

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

61

Sample Output

= |[f we open our file in Excel, the following
message box will appear:

Text Import Wizard - Step 1 of 3 @@

The Text Wizard has determined that your data is Delimited.
If this is correct, choose MNext, or choose the data type that best describes your data.

Original data type

Choose the file type that best describes your data:

®Del : - Characters such as commas or tabs separate each field.
width - Fields are aligned in columns with spaces between each field.

O ‘Fix

Start import at row: v 1 $. File origin: 437 : OEM United States v

Preview of file C:\Documents and Settings\dasd2iMy DocumentsiYisual St...\output.txt,

1 po1 5
2 hol
2 PO0
4 302
5 4O0 F

[mext> |[FEinish |

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Sample Output

= Excel starts this wizard if plain text files
are opened with Excel.

= Because of our explicit delimiting of our file
with tabs, we can just click finish.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

Sample Output

E3 Microsoft Excel - TabDeliminatedExample

(] Ele Edit view Insert Format

Tools Data ‘Window Help

NG H S IRVE S DB F9--@ -3 E D@

E : Arial

output.txt

B14 v f

A

m

c_ |

b | E | F [6 [H |

|

J

I

K

35

25

WO~ Wl =0

.‘ \—‘GD—‘LAJD—‘(:IDI\JD—‘—‘

1.5

0.5

0 1 2 3 4 5 6 7 8 9

10

1"

12

NN = == = === =
R R RS s DN B = B R el S R D S = el e i 2 S Rt Dl

And with

a few clicks ...

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

o

oJdJoUlddWDNDR

RPOORWORKFROONMORKRHRH

64

File I/O

= The brilliant part of file /O like this is that it
doesn’'t matter how big or small our input
file is.

* The software will read through the entire
file and create sensible output.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

File Dialog Boxes

» Easy to include the normal Windows
dialogs for browsing to a specific location
to store or retrieve a file

= Can add OpenFileDialog or
SaveFileDialog by dragging from Toolbox
to the design view onto your form

* The ShowDialog() method shows the
dialog

= The FileName property gives the filename

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

