File Input and Output (1/O)

Engineering 1D04, Teaching
Session 7



File I/O

* For anything in this session to work
correctly, you need to include the File I1/O
Library.

* This can be done by adding the following
line at the top of your C# program with the
rest of the using statements.

using System.IO;
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File I/O

* Problem: Find the distribution of grade
points from 1D04 last year, i.e. How many
people received each grade point?
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File I/O

= \With this data, we should be able to

produce a chart like this:
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File I/O

* There were 800 people in 1D04 |ast year.
This is a lot of data to enter manually - if
we have the grades already stored in a
computer readable form.

= When large amounts of data need to be
used in a computer program it is essential
to be able to import this data from a file.
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File I/O

* |n this example, a sample file has been
prepared called grades.yyz.

= Each line has a number from 0-12
corresponding to the McMaster Grade
Scale.

= Student names are not included.
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File I/O

= Extract from the Bgrades'yyz
grade file 3
8
6
8
3
12
9
1
0
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File I/O

= Develop an algorithm to solve this
problem?
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File 1/0 - Solution

= \We can use an array, with each index In
the array representing a grade point.

indices
v
0 1 2 3 4 5 6 7 8 9 10 11 12

array
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File 1/0 - Solution

= Each location will represent how many
people scored that grade.

= \We need to zero each location as we have
not read in any grades yet. = Why?

indices

0 1 2 3 4 5 6 7 8 9 10 11 12

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng



File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding
grade point.

Increment Value by 1

That is why we zero
the elements first
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File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding

grade poV
index
4

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 1 0 0 0 0 1 0 0 0 0

/

Increment Value by 1
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File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding
grade point.

Increment Value by 1
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File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding
grade point.

Increment Value by 1
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File 1/0 - Solution

= As we read through the file of grades, we

will increment the value stored at the
location of the corresponding
grade point.

Increment Value by 1
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File I1/O - Algorithm

= Create and zero an array of 13 elements
for grade points.

* |nput one grade from the grade file.

* Increment the respective location in the
grade point array.

= Repeat until all grades have been used.
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File I/O - Declarations

= Streams are used to work with files.
= A stream is simply a name for a flow of data.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ("grades.yyz");
string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

} Z




File I/O - Declarations

= Streams are used to work with files.
= A stream is simply a name for a flow of data.

name of stream

void findGradeDistribution ()
int[] gradeDistributi = new int[13];

StreamReader inStream = new StreamReader ("grades.yyz");

string inputString;

int inputlInt; \ This opens the stream for readir

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

£~




File I/O - Declarations

= The filename associated with the stream is a string passed as a
parameter inside ()’'s when creating a new stream.

= To make it easier right now, the file needs to be in the working
directory for your program.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ("grades.yyz");
string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

} Z




File I/O - Declarations

* |n Visual Studio, the working directory for
an application is:

» projectFolder\ProjectName\bin\Debug

e Example:
* C:\Documents and Settings\username\
My Documents\Visual Studio 2005\Projects\

gradeThingy\grade Thingy\bin\Debug
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File I/O

= Create and zero an array of 13 elements for grade points.
» |nput one grade from the grade file.

[ » Increment the respective location in the grade point array.
» Repeat until there are no more grades in the file.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"'grades.yyz")

string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;
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File I/O

» Create and zero an array of 13 elements for grade points.
= Input one grade from the grade file.

[ » Increment the respective location in the grade point array.
» Repeat until there are no more grades in the file.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ('"'grades.yyz")
string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString '= null) { \
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++; ‘////////////WNhy?
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

} Z




File I/O

Create and zero an array of 13 elements for grade points.

Input one grade from the grade file. <

Increment the respective location in the grade point array. \

Repeat until there are no more grades in the file. assumption
(at least 1)

void findGradeDistribution () {

int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"'grades.yyz")
string inputString;

int inputlnt;

inputString = inStream.ReadLine() ;
while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;

gradeDistribution[inputInt]++; ‘////////////WNhy?
inputString = inStream.ReadLine() ;
}

inStream.Close() ; :::;77
22




File I/O

» Create and zero an array of 13 elements for grade points.
» |nput one grade from the grade file.

[ * |ncrement the respective location in the grade point array.
» Repeat until there are no more grades in the file.

void findGradeDistribution() {
int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"'grades.yyz")

string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;
while (inputString != null) {

gradeDistribution[inputInt]++;
inputString = inStream.ReadLine () ;

}

inStream.Close() ;
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File I/O

» Create and zero an array of 13 elements for grade points.
» |nput one grade from the grade file.

[ » Increment the respective location in the grade point array.
= Repeat until there are no more grades in the file.

void findGradeDistribution() {
int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"'grades.yyz")

string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString !'= null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

.




Loop Visualization
@

Create and zero an array of 13
Why doesn't elements for grade points.

our C# loop

ook like this? @ i< there

another grade
in the file? O

Input one grade from
the grade file.

Increment the
respective location in
the grade point array.
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Loop Visualization
@

Create and zero an array of 13

. elements for grade points.
In C#, we can't Jrasep

ask the question
) ®

Is there another Itshthere ;
. . anotner grade
grade in the file? N the flle? 5
Input one grade from
Instead, we Can the grade file.

ask the question
Does the last
grade we
attempted to increment the
) respective location in
read, exist? the grade point array.
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Loop Visualization

We have to @
adjust the Ioop Create and zero an array of 13

_ ele®ents for grade points.
slightly to

dat Input one grade from

ac?commo ale @ the grade file.
this n_eW Does the last grade we
question. attempted to read, exist?

Input one grade from
the grade file.

Increment the
respective location in

the grade point array.
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File I/O

» inStream.ReadLine() is where all the magic happens.

» inStream.ReadLine() returns a string value of the next unread line
unless there are no more unread lines in which case it returns null.

void findGradeDistribution () {
int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ('"'grades.yyz")
string inputString;
int inputlnt;

inputString = inStream.ReadLine() ;

while (inputString !'= null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close() ;

} Z




File I/O - Animation

int[] gradeDistribution = new int[13];

StreamReader inStream = new StreamReader ('"grades.yyz'")
string inputString;

int inputlnt;

e

0 1 2 3 4 5 6 7 8 9 10 11 12
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File I/O - Animation

int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ("grades.yyz")
string inputString;

int inputlInt; grades.yyz
) | 8 ||
3
8
6
8
3
O 1 2 3 4 5 6 7 8 9 10 11 12 12
o/ o|o0o|O0O|O|O|O|]O|O|O|O|O|O]| /O
1
0
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File /O - Animation

int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ('"grades.yyz'")
string inputString;

int inputlInt; grades.yyz
— 8 |
3
inputString 8
6
8
3
o 1 2 3 4 5 6 7 8 9 10 11 12 |12
0 0 0 0 0 0 0 0 0 0 0 0 0 °)
1
0
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File /O - Animation

int[] gradeDistribution = new int[13];
StreamReader inStream = new StreamReader ('"grades.yyz'")
string inputString;

int inputlnt; grades.yyz
m— | 8 Ll
3
inputString inputInt 8
6
8
3
1 2 3 4 5 6 7 8 9 10 11 12 |12
0 0 0 0 0 0 0 0 0 0 0 0 o
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString ////////inﬁﬁffgg///////// 8
ngm e 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 0 0 0 0 0 °)
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString '= null) { True
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
- 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 0 0 0 0 0 °)
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
ngn 8 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 0 0 0 0 0 °)
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;
while (inputString != null) {

inputInt = Convert.ToInt32 (inputString) ;

gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
) 3
inputString inputInt 8
ng 8 6
8
3
o 1 2 3 4 5 6 7 8 9 10 11 12 |12
0 0 0 0 0 0 0 0 1 0 0 0 0 °)
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ; grades.yyz

} 8 L

-3
inputString in m— | 8

w3 < 8 6
8

w

o 1 2 3 4 5 6 7 8 9 10 11 12 12

o r
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString '= null) { True
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
... 3
inputString inputInt —1 8
n3m 8 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 1 0 0 0 0 o
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
... 3
inputString inputInt —1 8
n3m 3 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 0 0 0 0 0 1 0 0 0 0 o
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;
while (inputString != null) {

inputInt = Convert.ToInt32 (inputString) ;

gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
3
inputString inputInt —1 8
n3m 3 6
8
3
o 1 2 3 4 5 6 7 8 9 10 11 12 |12
0 0 0 1 0 0 0 0 1 0 0 0 0 o
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
nqn 1 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 0 0 2 0 0 1 0 3 1 0 0 1 °)
1
-O

Magically Skipping Steps V
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
- .. 3
inputString inputInt 8
nyw 1 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
- | 0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 |
... 3
inputString inputInt 8
"o" | 1 6
8
3
o 1 2 3 4 5 6 1 9 10 11 12 (12
1|/1/0|2|0|0|1]|0|3|11]0]|0]1 9
1
-0

— L ]
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString '= null) { True
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
"or 1 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
0

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44



File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
... 3
inputString inputInt 8
o 0 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

0 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
... 3
inputString inputInt 8
K 0 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

1 1 0 2 0 0 1 0 3 1 0 0 1 o
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L
- .. 3
inputString inputInt 8
K 0 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

1 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
0
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File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 ||
3
inputString inputInt 8
null v 0 6
8
3
0O 1 2 3 4 5 6 8 9 10 11 12 |12
1 1 0 2 0 0 1 0 310 0 °)
1
0)

)

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng

48



File I/O - Animation

inputString = inStream.ReadLine() ;

while (inputString '= null) { False
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;

inputString = inStream.ReadLine() ; grades.yyz

} 8 L]
- .. 3
inputString inputInt 8
null 0 6
8
3

o 1 2 3 4 5 6 7 8 9 10 11 12 |12

1 1 0 2 0 0 1 0 3 1 0 0 1 °)
1
0
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File 1/O

inputString = inStream.ReadLine() ;

while (inputString != null) {
inputInt = Convert.ToInt32 (inputString) ;
gradeDistribution[inputInt]++;
inputString = inStream.ReadLine() ;

}

inStream.Close () ;

} 7

= Streams always need to be closed when
they are finished being used.

» |[f they don’t get closed, unexpected
results may appear in the files that are
being accessed.
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Output to Data File

= Now that our program knows the
distribution of grades from our input file, it
would be nice to produce a graph.

= Graphs are not simple to produce.

= However, we can easily output our data to
a file and open it in Excel. With just a few
clicks in Excel, a graph can be created.
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Output to Data File

= What information do | want to put in the
file?

= \What format do | need to use?
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Output to Data File

= \What information do | want to put in the file?
* The grade points
* The number of students with each grade point.

» What format do | need to use?
* A file that is tab delimited is easily accessed in

Excel.

* In this case, tab delimited means that the tab
character separates entries on any line,

* i.e. grade point_average tab number_of students
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Algorithm for Output to File

= Run previously developed program.
= Start at beginning of grade point array

* Print a line in a file that reads:
e arraylndex arrayContents

 Where arraylndex is the index of grade point array.

 arrayContents is the numerical value in that index.

 arraylndex and arrayContents are separated by a
tab.

= L oop through grade point array until all
grade points have been written to the file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng
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Output to Data File

= Run previously developed program.
= Start at beginning of grade point array.
* Print a line in a file that reads:

* arraylndex arrayContents

= Loop through grade point array until all grade points have
been written to the file.

StreamWriter outStream = new StreamWriter ("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++) {
outStream.WriteLine (i + "\t" + gradeDistribution[i]) ;

}

outStream.Close() ;

L=
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Output to Data File

» This declares an output stream.

= |t creates a file called "output.txt" in the application's
working directory.

= \We can write strings to this output stream in the same way
we have used strings in message boxes for example.

StreamWriter outStream = new StreamWriter ("output.txt"):
for (int i = 0; i < gradeDistribution.Length; i++) {
outStream.WriteLine (i + "\t" + gradeDistribution[i]) ;

}

outStream.Close() ;

L=
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Output to Data File

= Run previously developed program.
= Start at beginning of grade point array.
* Print aline in a file that reads:

* arraylndex arrayContents

= Loop through grade point array until all grade points have
been written to the file.

StreamWriter outStream = new StreamWriter ("output.txt");
for (int i = 0; i1 < gradeDistribution.Length; i++) {
outStream.WriteLine (i + "\t" + gradeDistribution[i]) ;

}

outStream.Close() ;

L=
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Output to Data File

= Run previously developed program.
= Start at beginning of grade point array.
= Print a line in a file that reads:

® arraylndex arrayContents

= Loop through grade point array until all grade points have
been written to the file.

StreamWriter outStream = new StreamWriter ("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++) {
outStream.WriteLine (i + "\t" + gradeDistribution[i]);

}

outStream.Close() ;

L=
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Output to Data File

= WriteLine() does all the magic of writing to a file.

» |t writes a single string to our output file (ends with "\n").

\t is the code for a tab.
= "\t" is a string with a tab in it

StreamWriter outStream = new StreamWriter ("output.txt");

for (int i = 0; i < gradeDistribution.Length; i++) {

outStream.WriteLine (i + "\t" + gradeDistribution[i]);

}

outStream.Close() ;

L=
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Output to Data File

= Streams must be closed when we are finished using them.

StreamWriter outStream = new StreamWriter ("output.txt");

for (int i = 0; i < gradeDistribution.Length; i++) {

outStream.WriteLine (i + "\t" + gradeDistribution[i]) ;

}

outStream.Close () ;

L=
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Sample Output

= Qutput from Sample Input:

output.txt

o

oo Jdoy Ul WNMNBK

P OORKFRFRWORKFROOMORHBRKR
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Sample Output

= |[f we open our file in Excel, the following
message box will appear:

Text Import Wizard - Step 1 of 3 @@

The Text Wizard has determined that your data is Delimited.
If this is correct, choose MNext, or choose the data type that best describes your data.

Original data type

Choose the file type that best describes your data:

®Del : - Characters such as commas or tabs separate each field.
width - Fields are aligned in columns with spaces between each field.

O ‘Fix

Start import at row: v 1 $ . File origin: 437 : OEM United States v

Preview of file C:\Documents and Settings\dasd2iMy DocumentsiYisual St...\output.txt,

1 po1 5
2 hol
2 PO0
4 302
5 4O0 F

[ mext> |[ FEinish |
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Sample Output

= Excel starts this wizard if plain text files
are opened with Excel.

= Because of our explicit delimiting of our file
with tabs, we can just click finish.
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Sample Output

E3 Microsoft Excel - TabDeliminatedExample
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And with

a few clicks ...
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File I/O

= The brilliant part of file /O like this is that it
doesn’'t matter how big or small our input
file is.

* The software will read through the entire
file and create sensible output.
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File Dialog Boxes

» Easy to include the normal Windows
dialogs for browsing to a specific location
to store or retrieve a file

= Can add OpenFileDialog or
SaveFileDialog by dragging from Toolbox
to the design view onto your form

* The ShowDialog() method shows the
dialog

= The FileName property gives the filename
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