
File Input and Output (I/O)

Engineering 1D04, Teaching
Session 7

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

 using System.IO;

File I/O

 For anything in this session to work
correctly, you need to include the File I/O
Library.

 This can be done by adding the following
line at the top of your C# program with the
rest of the using statements.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

File I/O

 Problem: Find the distribution of grade
points from 1D04 last year, i.e. How many
people received each grade point?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

Grade Point

File I/O

 With this data, we should be able to
produce a chart like this:

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

File I/O

 There were 800 people in 1D04 last year.
This is a lot of data to enter manually - if
we have the grades already stored in a
computer readable form.

 When large amounts of data need to be
used in a computer program it is essential
to be able to import this data from a file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

File I/O

 In this example, a sample file has been
prepared called grades.yyz.

 Each line has a number from 0-12
corresponding to the McMaster Grade
Scale.

 Student names are not included.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

8
3
8
6
8
3
12
9
1
0

grades.yyz

File I/O

 Extract from the
grade file

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

File I/O

 Develop an algorithm to solve this
problem?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

0 1 2 3 4 5 6 7 8 9 10 11 12

array

indices

File I/O - Solution

 We can use an array, with each index in
the array representing a grade point.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

 Each location will represent how many
people scored that grade.

 We need to zero each location as we have
not read in any grades yet.

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

array

indices

Why?

File I/O - Solution

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

se
qu

en
ce

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 1 0 0 0 0

index

Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.

That is why we zero
the elements first

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

se
qu

en
ce

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 1 0 0 0 0 1 0 0 0 0

index

Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

se
qu

en
ce

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 1 0 0 0 0 2 0 0 0 0

index

Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

se
qu

en
ce

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 1 0 0 1 0 2 0 0 0 0

index

Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

se
qu

en
ce

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 1 0 0 1 0 3 0 0 0 0

index

Increment Value by 1

File I/O - Solution

 As we read through the file of grades, we
will increment the value stored at the
location of the corresponding
grade point.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

File I/O - Algorithm

 Create and zero an array of 13 elements
for grade points.

 Input one grade from the grade file.
 Increment the respective location in the

grade point array.
 Repeat until all grades have been used.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

void findGradeDistribution(){
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;

 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O - Declarations
 Streams are used to work with files.
 A stream is simply a name for a flow of data.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

void findGradeDistribution(){
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;

 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O - Declarations
 Streams are used to work with files.
 A stream is simply a name for a flow of data.

This opens the stream for reading

name of stream

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

void findGradeDistribution(){
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;

 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O - Declarations
 The filename associated with the stream is a string passed as a

parameter inside ()’s when creating a new stream.
 To make it easier right now, the file needs to be in the working

directory for your program.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

File I/O - Declarations

 In Visual Studio, the working directory for
an application is:
 projectFolder\ProjectName\bin\Debug

 Example:
 C:\Documents and Settings\username\
 My Documents\Visual Studio 2005\Projects\

 gradeThingy\gradeThingy\bin\Debug

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

void findGradeDistribution(){
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;

 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

void findGradeDistribution(){
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;

 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.

why?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

void findGradeDistribution(){
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;

 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.

why?

assumption
(at least 1)

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

void findGradeDistribution(){
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;

 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

void findGradeDistribution(){
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;

 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O
 Create and zero an array of 13 elements for grade points.
 Input one grade from the grade file.
 Increment the respective location in the grade point array.
 Repeat until there are no more grades in the file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

Create and zero an array of 13
elements for grade points.

Input one grade from
the grade file.

Increment the
respective location in
the grade point array.

2

3

1

4

Why doesn't
our C# loop
look like this? Is there

another grade
in the file?

Loop Visualization

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

Create and zero an array of 13
elements for grade points.

Input one grade from
the grade file.

Increment the
respective location in
the grade point array.

2

3

1

4

In C#, we can't
ask the question
Is there another
grade in the file?

Instead, we can
ask the question
Does the last
grade we
attempted to
read, exist?

Is there
another grade

in the file?

Loop Visualization

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

Loop Visualization
Create and zero an array of 13
elements for grade points.

Input one grade from
the grade file.

Increment the
respective location in
the grade point array.

Does the last grade we
attempted to read, exist?

2

3

1

4

We have to
adjust the loop
slightly to
accommodate
this new
question.

Input one grade from
the grade file.

3

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 28

void findGradeDistribution(){
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;

 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O
 inStream.ReadLine() is where all the magic happens.
 inStream.ReadLine() returns a string value of the next unread line

unless there are no more unread lines in which case it returns null.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

. . .
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;
. . .

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

File I/O - Animation

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30

. . .
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;
. . . 8

3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

. . .
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;
. . .

inputString

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

. . .
 int[] gradeDistribution = new int[13];
 StreamReader inStream = new StreamReader("grades.yyz");
 string inputString;
 int inputInt;
. . .

inputString inputInt

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"8"

inputInt

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"8"

inputInt

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

True

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"8"

inputInt

8

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"8"

inputInt

8

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 1 0 0 0 0

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"3"

inputInt

8

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 1 0 0 0 0

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"3"

inputInt

8

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 1 0 0 0 0

True

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"3"

inputInt

3

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 1 0 0 0 0

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"3"

inputInt

3

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 1 0 0 0 0 1 0 0 0 0

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"1"

inputInt

1

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 2 0 0 1 0 3 1 0 0 1

Magically Skipping Steps

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"1"

inputInt

1

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 43

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"0"

inputInt

1

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"0"

inputInt

1

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz

True

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"0"

inputInt

0

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 46

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"0"

inputInt

0

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 47

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

"0"

inputInt

0

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 48

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

null

inputInt

0

8
3
8
6
8
3
12
9
1
0

0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 49

inputString = inStream.ReadLine();
while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
}
. . .

inputString

null

inputInt

0

8
3
8
6
8
3
12
9
1
0

False

0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 2 0 0 1 0 3 1 0 0 1

File I/O - Animation

grades.yyz

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 50

. . .
 inputString = inStream.ReadLine();
 while (inputString != null){
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }
 inStream.Close();
}

File I/O

 Streams always need to be closed when
they are finished being used.

 If they don’t get closed, unexpected
results may appear in the files that are
being accessed.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 51

Output to Data File

 Now that our program knows the
distribution of grades from our input file, it
would be nice to produce a graph.

 Graphs are not simple to produce.
 However, we can easily output our data to

a file and open it in Excel. With just a few
clicks in Excel, a graph can be created.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 52

Output to Data File

 What information do I want to put in the
file?

 What format do I need to use?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 53

Output to Data File

 What information do I want to put in the file?
 The grade points
 The number of students with each grade point.

 What format do I need to use?
 A file that is tab delimited is easily accessed in

Excel.
• In this case, tab delimited means that the tab

character separates entries on any line,
• i.e. grade_point_average tab number_of_students

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 54

Algorithm for Output to File

 Run previously developed program.
 Start at beginning of grade point array
 Print a line in a file that reads:

 arrayIndex arrayContents
• Where arrayIndex is the index of grade point array.
• arrayContents is the numerical value in that index.
• arrayIndex and arrayContents are separated by a

tab.

 Loop through grade point array until all
grade points have been written to the file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 55

. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
 outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 Run previously developed program.
 Start at beginning of grade point array.
 Print a line in a file that reads:

 arrayIndex arrayContents
 Loop through grade point array until all grade points have

been written to the file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 56

. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
 outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 This declares an output stream.
 It creates a file called "output.txt" in the application's

working directory.
 We can write strings to this output stream in the same way

we have used strings in message boxes for example.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 57

. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
 outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 Run previously developed program.
 Start at beginning of grade point array.
 Print a line in a file that reads:

 arrayIndex arrayContents
 Loop through grade point array until all grade points have

been written to the file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 58

. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
 outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 Run previously developed program.
 Start at beginning of grade point array.
 Print a line in a file that reads:

 arrayIndex arrayContents
 Loop through grade point array until all grade points have

been written to the file.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 59

. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
 outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 WriteLine() does all the magic of writing to a file.
 It writes a single string to our output file (ends with "\n").
 \t is the code for a tab.
 "\t" is a string with a tab in it

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 60

. . Program to input / create data not shown on this slide. .

StreamWriter outStream = new StreamWriter("output.txt");
for (int i = 0; i < gradeDistribution.Length; i++){
 outStream.WriteLine(i + "\t" + gradeDistribution[i]);
}
outStream.Close();

Output to Data File

 Streams must be closed when we are finished using them.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 61

0 1
1 1
2 0
3 2
4 0
5 0
6 1
7 0
8 3
9 1
10 0
11 0
12 1

Sample Output

 Output from Sample Input:
output.txt

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 62

Sample Output

 If we open our file in Excel, the following
message box will appear:

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 63

Sample Output

 Excel starts this wizard if plain text files
are opened with Excel.

 Because of our explicit delimiting of our file
with tabs, we can just click finish.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 64

0 1
1 1
2 0
3 2
4 0
5 0
6 1
7 0
8 3
9 1
10 0
11 0
12 1

Sample Output

And with a few clicks …

output.txt

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 65

File I/O

 The brilliant part of file I/O like this is that it
doesn’t matter how big or small our input
file is.

 The software will read through the entire
file and create sensible output.

File Dialog Boxes

 Easy to include the normal Windows
dialogs for browsing to a specific location
to store or retrieve a file

 Can add OpenFileDialog or
SaveFileDialog by dragging from Toolbox
to the design view onto your form

 The ShowDialog() method shows the
dialog

 The FileName property gives the filename
© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 66

