
Engineering 1D04

Teaching Session 8

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

File I/O

 Remember where we left off:
 We read all the grades from a file and then

processed them.
 We then wrote them out to a text file that

we could read with Microsoft Excel.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

File I/O

 It’s inconvenient that the files need to be in
the current working directory.

 In order to remove the dependency on the
working directory, filenames can also be
fully qualified filenames (or just full
pathnames).

 Lets look at the file structure of Windows
to discuss the concept of full filenames.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

Memory

 There are two types of memory in a
computer.
 Primary Memory
 Secondary Memory

 Common types of primary memory are:
 Cache
 RAM

volatile memory

persistent memory

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

Memory

 Secondary memory devices could be:
 DVD
 Hard Drive
 Magnetic Tape
 Flash Disk
 Floppy Drive

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

Memory

 We're particularly interested in secondary
memory at this point.

 Only this type of memory can store files
and folders.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

Windows Explorer

 There are a number of visual ways to
browse secondary memory.

 Windows Explorer:
 Right Click on Start
 Click Explore

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

Windows Explorer

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

Windows Explorer

 We can click around and explore all the
files / folders our computer has access to.

 The exact location of the highlighted folder
is given in the address bar.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

Drive Letter

Path

Windows Explorer

 Lets examine the address:

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

Floppy #1 is A:

Hard Drive #1 is C:

DVD/CD #1 is often D:

Drive Structure

 Each hardware device has at least one
drive letter.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

File Structure

 These drives are visualized in Windows
Explorer on the left

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

Drive Structure

 Each device has a main directory called a
root directory/folder and is represented by
a \.

 Sub-folders are branches off the root
directory separated by \.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

\

Documents and Settings

dasd2

My Documents

My PicturesMy Music My Videos

Windows

System32

Windows Explorer

 Notice how the folders are in a tree
structure?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

C:\Documents and Settings\dasd2\My Documents\Resume.doc
C:\Documents and Settings\dasd2\My Documents\

My Pictures\photo1.jpg

Drive Structure

 All files on your computer can be referenced
by a full filename.

 This name includes:
 The Drive Letter
 The Path
 The Filename

 This name is case sensitive.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

C:\Documents and Settings\dasd2\My Documents\Resume.doc
C:\Documents and Settings\dasd2\My Documents\

My Pictures\photo1.jpg

\

Documents and Settings

dasd2

My Documents

My PicturesResume.doc

photo1.jpg

Drive Structure

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

File I/O

 Putting a fully qualified name into a string
poses one problem. The ‘\’ character
cannot be put directly into a string.

 In C#, the ‘\’ character is known as an
escape character. It is used to put special,
non-keyboard characters into a string.

 As an example: in order to put a tab into a
string, the code “\t” must be entered.

why do we
want to?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

MessageBox.Show("C:\\Documents and Settings\\dasd2\\myfile.txt");

File I/O

 In order to put an actual ‘\’ into a string
instead of using it as an escape character,
two \\’s must be entered.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

File I/O

 When programming, it is also possible to
use a GUI tool to select a file and create a
string from its fully qualified filename.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

Do these look familiar?

File I/O

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

File I/O

 A file dialog box will produce the string of a
fully qualified filename for a selected file.

 The OpenFileDialog allows a user to
select a file that exists.

 The SaveFileDialog allows a user to
specify a filename. If the file already
exists, the dialog will ensure the user
knows that this file will be overwritten.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

0penFileDialog of = new OpenFileDialog();
SaveFileDialog sf = new SaveFileDialog();

of.ShowDialog();
sf.ShowDialog();

File I/O

 This code creates two new dialog boxes.
 of ⇒ An OpenFileDialog
 sf ⇒ A SaveFileDialog

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

File I/O

 The dialog boxes are now shown. The
OpenFileDialog will appear first.

 The user can make a file selection.

0penFileDialog of = new OpenFileDialog();
SaveFileDialog sf = new SaveFileDialog();

of.ShowDialog();
sf.ShowDialog();

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

File I/O

 The filenames will now be available in:
 of.FileName;
 sf.FileName;

 Right now, it is important that you know
how to use this code. It is not important
that you know why this code works. This
will all become clear soon.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

void findGradeDistribution()
{
 int[] gradeDistribution = new int[13];
 string inputString;
 int inputInt;
 StreamReader inStream;
 StreamWriter outStream;
 OpenFileDialog of = new OpenFileDialog();
 SaveFileDialog sf = new SaveFileDialog();

 of.ShowDialog();
 sf.ShowDialog();

 inStream = new StreamReader(of.FileName);
 outStream = new StreamWriter(sf.FileName);
. . .

1D04 Grade Distribution - Revised

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

. . .
 inputString = inStream.ReadLine();
 while (inputString != null)
 {
 inputInt = Convert.ToInt32(inputString);
 gradeDistribution[inputInt]++;
 inputString = inStream.ReadLine();
 }

 for (int i = 0; i < gradeDistribution.Length; i++)
 {
 outStream.WriteLine("Grade Point " + i + " # "

+ gradeDistribution[i]);
 }
 outStream.Close();
 inStream.Close();
}

1D04 Grade Distribution - Revised

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

Tyler,12
Austin,4
Makayla,6
Jasmine,11

Parsing File Contents

 Suppose we have a name and a grade on
a single line in a file separated by a
comma.

 What would it take to turn this file into an
array of names and an array of grades?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

Parsing Algorithm

 Use a string array called name for names
and an integer array called grade for grades.

 Start at the beginning of the file and the
beginning of the arrays. [0]

 Read one line of the file and separate into
name and grade (still magic).

 Store name and grade into their arrays.
 Move onto the next line of file.
 Repeat until file is completely read.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 28

 void difficultFile()
{
 StreamReader inStream = new StreamReader("difficult.xxx");
 string inputString;
 string [] name = new string[500];
 int [] grade = new int [500];

 inputString = inStream.ReadLine();
 while (inputString != null)
 {

// Parse the file into something useful
// still magic
inputString = inStream.ReadLine();

 }
 inStream.Close();
}

Base Code

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

Tyler,12
Austin,4
Makayla,6
Jasmine,11

Parsing Strings

 We know how to read a line from a file
using ReadLine. It comes in as a string.

 So, we need to learn some advanced
string manipulation techniques so that we
can dice up each line appropriately.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30

String Dicing Algorithm

 Find the location of the comma in
inputString.

 Split the string based on where the comma
is so that the name is to the left of the
comma and the grade is to the right.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

Tyler,12
Austin,4
Makayla,6
Jasmine,11

Tyler,12

inputString

12TylerName Grade
(string)

Convert.ToInt32

12Grade
(int)

Parsing Strings

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

inputString[2];

What does this do?

Parsing Strings

 Strings elements are similar to arrays.
 Each character in a string can be

accessed by an index.
 Unlike normal arrays, we cannot modify

the contents of the string at an index.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

int i = 0;
while((i < inputString.Length) &&

 (inputString[i] != ','))
{
 i++;
}

What is the value of i when this loop finishes executing?

Parsing Strings

 We can loop through a string looking at
each element until we find a comma.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

Parsing Strings

 There is an easier way.
 A string has an IndexOf method.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

string inputString = "Tyler,12";
int index;

index = inputString.IndexOf(',');

index = 5

Parsing Strings

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

Parsing Strings

 IndexOf() can take either a string or a
character and return the index of it in a
string.
 inputString.IndexOf("blah");
 inputString.IndexOf(',');

 If this element is not found in the string,
IndexOf() returns -1.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

Parsing Strings

 Now, to split up the string.
 We've identified the index of the point at

which we want to split the line.
 What method may be useful in this

situation?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

name = inputString.Substring(0, index);
grade = Convert.ToInt32(inputString.Substring(
 index + 1, inputString.Length - index - 1));

Parsing Strings

 Substring:
 The first parameter is the index to start

copying the source string from.
 The second parameter is the length of the

substring to be copied.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

Parsing Strings

 The conversion for the last half of the
string is painful.

 It should be done without calculating
where the end of the string is.

name = inputString.Substring(0, index);
grade = Convert.ToInt32(inputString.Substring(
 index + 1, inputString.Length - index - 1));

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

Parsing Strings

 Substring with 1 parameter:
 The parameter is the index to start copying

the source string from. This will copy all the
characters in the string from this point until the
end.

name = inputString.Substring(0, index);
grade = Convert.ToInt32(inputString.Substring(
 index + 1));

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

string inputString = "Tyler,12";
int index;
int grade;
string name;

index = inputString.IndexOf(',');
name = inputString.Substring(0,index);
grade = Convert.ToInt32(
 inputString.Substring(index + 1));

Parsing Strings

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

void difficultFile(){
 StreamReader inStream = new StreamReader("difficult.xxx");
 string inputString;
 string [] name = new string[500];
 int [] grade = new int [500];
 int index;
 int i = 0;

 inputString = inStream.ReadLine();
 while (inputString != null){

index = inputString.IndexOf(',');
name[i] = inputString.Substring(0, index);
grade[i] = Convert.ToInt32(

 inputString.Substring(index+1));
i++;
inputString = inStream.ReadLine();

 }
 inStream.Close();
}

Full Example

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 43

string inputString = "Das,Dave,6";

Parsing Strings

 What about the following situation? How
would we determine where the second
comma is?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

string inputString = "Das,Dave,6";
int comma1, comma2;

comma1 = inputString.IndexOf(',');
comma2 = inputString.IndexOf(',', comma1 + 1);

Parsing Strings

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

comma2 = inputString.IndexOf(',', comma1 + 1);

Parsing Strings

 IndexOf can take a second parameter.
 This is the index that the indexOf method

will begin at.
 If we start at the index directly after the

first comma, we'll find the index of the
second comma.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 46

Tyler,12
Austin ,4
Makayla ,6
 Jasmine,11

Parsing Strings

 It's also possible that there is garbage
information in a file.

 There may be extra white space before or
after a name.

 You have all the tools you need to deal
with it.

 How would you?

