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Recap - Classes & Objects
 class hsRecord
 {
    public string name;
    public int score;
 }

Class declaration
defines a complex
data structure

hsRecord myRef;
myRef = new hsRecord();

hsRecord[] highScore = new hsRecord[3];

name score

Instantiation of hsRecord
is an object

name score

name score

name score

0

1

2

void addScore(string newName,
              int newScore)
{
…\\uses highScore etc
}
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General Classes & Objects

 We have seen how classes can
encapsulate data structures.

 This lets us group differently typed
variables into a single record.

 Well - it’s even better than that 
 Classes can encapsulate data structures

and methods that work with those data
structures, into a single entity.
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General Classes & Objects
 class hsRecord
 {
    public string name;
    public int score;
 }

hsRecord[] highScore = new hsRecord[3];

public void addScore(string newName, int newScore)
{

…
}

public void show()
{

…
}

Class HighScore

private data

public methods
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General Classes & Objects
 class hsRecord
 {
    public string name;
    public int score;
 }

hsRecord[] highScore = new hsRecord[3];

public void addScore(string newName, int newScore)
{

…
}

public void show()
{

…
}

Class HighScore

private data

public methods

cannot access
from outside the
class

only way to
access internal
data structures
from outside the
class
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General Classes & Objects
 class hsRecord
 {
    public string name;
    public int score;
 }

hsRecord[] highScore = new hsRecord[3];

public void addScore(string newName, int newScore)
{

…
}

public void show()
{

…
}

Class HighScore

So, what do
users
of the class see?
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General Classes & Objects

public void addScore(string newName, int newScore)

public void show()

Class HighScore

This!
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General Classes & Objects

 Before we see how we can construct such
a class, let’s discuss why it could be
useful.

 So - why?
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General Classes & Objects

 Before we see how we can construct such
a class, let’s discuss why it could be
useful.

 Encapsulation - protecting data
structures from being accessed from
outside the class is crucial.  Why?
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General Classes & Objects

 Before we see how we can construct such
a class, let’s discuss why it could be
useful.

 Encapsulation - protecting data
structures from being accessed from
outside the class is crucial.
 users cannot modify internal data
 users cannot use information about how

internal data structures work
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General Classes & Objects

 Before we see how we can construct such
a class, let’s discuss why it could be
useful.

 Multiple instances - the class can be
instantiated multiple times and each
instance is its own unique object.  This
way, it would require very little extra code
to be able to store more than one set of
high scores.
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General Classes & Objects

 Example

Instantiate
first set:
hs1 = new HighScore();

hs1.add(n1,s1);

hs1.show();

Instantiate second set:
       hs2 = new HighScore();

hs2.add(n2,s2);

hs2.show();

txtName1 txtName2

txtScore2txtScore1
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General Classes & Objects

 Example

Instantiate
first set:
hs1 = new HighScore();

hs1.add(n1,s1);

hs1.show();

Instantiate second set:
       hs2 = new HighScore();

hs2.add(n2,s2);

hs2.show();

txtName1 txtName2

txtScore2txtScore1

aside: we can set each game up in
a group.  This groups components
together as shown.
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General Classes & Objects

 Example

Instantiate
first set:
hs1 = new HighScore();

hs1.add(n1,s1);

hs1.show();

Instantiate second set:
       hs2 = new HighScore();

hs2.add(n2,s2);

hs2.show();

what else do we need
to know/do to get this to work?

txtName1 txtName2

txtScore2txtScore1
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General Classes & Objects

 Example

Instantiate
first set:
hs1 = new HighScore();

hs1.add(n1,s1);

hs1.show();

Instantiate second set:
       hs2 = new HighScore();

hs2.add(n2,s2);

hs2.show();

declare:
HighScore hs1, hs2;

n1=txtName1.Text
s1=txtScore1.Text

n2=txtName2.Text
s2=txtScore2.Text

txtName1 txtName2

txtScore2txtScore1
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General Classes & Objects

 Back to the class - HighScore
 We can use declarations we already

developed for the earlier version.
 We also developed the algorithms for add

and show - and we can use them also.
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General Classes & Objects
public class HighScore
{

private class hsRecord
{

public string name;
public int score;

}

private const int maxElements = 10;
private hsRecord[] hsArray = new hsRecord[maxElements];
private int length;

public bool add(string newName, int newScore)
{

. . .
}

public void show()
{

. . .
}

}

no room to show this here

no room to show this here



© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

General Classes & Objects
public class HighScore
{

private class hsRecord
{

public string name;
public int score;

}

private const int maxElements = 10;
private hsRecord[] hsArray = new hsRecord[maxElements];
private int length;

public bool add(string newName, int newScore)
{

. . .
}

public void show()
{

. . .
}

}

no room to show this here

no room to show this here

public

public

public

private

private

private
private

public
public

public

private

available outside the
class

NOT available outside 
the class

public what about this one?
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General Classes & Objects
public class HighScore
{

private class hsRecord
{

public string name;
public int score;

}

private const int maxElements = 10;
private hsRecord[] hsArray = new hsRecord[maxElements];
private int length;

public bool add(string newName, int newScore)
{

. . .
}

public void show()
{

. . .
}

}

no room to show this here

no room to show this here

public

public

public

private

private

private
private

public
public

available outside hsRecord
but not outside HighScore
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General Classes & Objects
public bool add(string newName, int newScore)
{
   int j, mark;

hsRecord newRecord;

newRecord = new hsRecord();
newRecord.score = newScore;
newRecord.name = newName;

 if (length < maxElements)
{

hsArray[length] = newRecord;
length++;

}

mark = 0;
while (mark <= length - 1 &&
       hsArray[mark].score >= newScore) mark++;

if (mark <= length - 1)
{

for (j = length - 1; j > mark; j--)
hsArray[j] = hsArray[j - 1];

hsArray[mark] = newRecord;
}
return ((length < maxElements) || (mark <= length - 1));

}

a small change:
add returns a boolean value.
True  ⇒ record was added
              because score was
              good enough
False ⇒ record was not added
             because score was
             not good enough
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General Classes & Objects

public void show()
{

const int nameLength = 15;

string displayString, s;

displayString = "High Scores\n";
for (int i = 0; i <= length-1; i++)
{

s = hsArray[i].name;
while (s.Length < nameLength) s += " ";
s += "\t" + hsArray[i].score + "\n";
displayString += s;

}
MessageBox.Show(displayString);

}

show displays the
current high scores
in a message box
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General Classes & Objects

 Once we have the class set up, we can
concentrate on using it to implement the
behaviour on our form.

 If we want two instances of the class (we
need them to manage each of the two
high score lists we want to maintain) we
have to declare two variables of that type:
 HighScore hs1, hs2;
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General Classes & Objects

private void btnStart1_Click(object sender, EventArgs e)
{

hs1 = new HighScore();
}

private void btnAdd1_Click(object sender, EventArgs e)
{

if (hs1.add(txtName1.Text, 
    Convert.ToInt32(txtScore1.Text)))

   lblAdded1.Text = txtName1.Text + " added";
else lblAdded1.Text = txtName1.Text + " not added";

}

private void btnShow1_Click(object sender, EventArgs e)
{

hs1.show();
}

For Game One Scores:
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General Classes & Objects

private void btnStart2_Click(object sender, EventArgs e)
{

hs2 = new HighScore();
}

private void btnAdd2_Click(object sender, EventArgs e)
{

if (hs2.add(txtName2.Text, 
    Convert.ToInt32(txtScore2.Text)))

   lblAdded2.Text = txtName2.Text + " added";
else lblAdded2.Text = txtName2.Text + " not added";

}

private void btnShow2_Click(object sender, EventArgs e)
{

hs2.show();
}

For Game Two Scores:
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Examples with Game One
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Examples with Game One
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Examples with Game One
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Examples with Game One
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Using the Class
namespace High_Score_Class
{
    public partial class Form1 : Form
    {       
        HighScore hs1, hs2;    

        public Form1() {
            InitializeComponent();
        }
        private void btnStart1_Click(object sender, EventArgs e) {
               . . .
        }
        private void btnAdd1_Click(object sender, EventArgs e) {
    . . .
        }
        private void btnShow1_Click(object sender, EventArgs e) {
    . . .
        }
        private void btnStart2_Click(object sender, EventArgs e) {
    . . .
        }
        private void btnAdd2_Click(object sender, EventArgs e) {
    . . .
        }
        private void btnShow2_Click(object sender, EventArgs e) {
    . . .
        }
    }
    public class HighScore
    {
           . . .
    }
}

HighScore

Form uses 
HighScore

class

references to objects declared
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More of the Example

 

Two separate high score systems operating

trying
to add
a score
of 10

now
click
Add
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More of the Example

 

a score
of 10
was not
enough

Two separate high score systems operating
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More of the Example

  

after clicking
Show for
Game One

after clicking
Show for
Game Two



User Interface Considerations
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User Interface

 There are some fine points concerning
the user interface we should consider.

 Note - this is just another aspect of
algorithms.  The user interface has to be
considered in our solution algorithms.

1. When we click on a button we need to
consider what component should have
the focus (i.e. what should be “live”).

2. How do we help the user not to click an
inappropriate button?
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User Interface

1. We can specify that a component has
the focus by using the method Focus().
So, after clicking Add in the Game One
group, we could set the focus to the
name text box by txtName1.Focus()

2. A better set up of components would be
the following: In each group, make all
components not visible initially - except
Start.  If Start is clicked, make Start not
visible, make all others visible.
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private void btnAdd1_Click(object sender, EventArgs e)
{

if (hs1.add(txtName1.Text,
    Convert.ToInt32(txtScore1.Text)))

lblAdded1.Text = txtName1.Text + " added";
else lblAdded1.Text = txtName1.Text + " not added";
txtName1.Text = "";
txtScore1.Text = "";
txtName1.Focus();

}

User Interface

  Example for the button Add

clear text boxes

move focus



Class Methods and Properties
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Class Methods & Properties

 We have already seen methods of
classes.  In our example we used two
methods: add and show.

 The methods give users of the class
access to internal variables, but protects
those variables from unauthorized
modification.

 We have also seen properties.  Where?
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Class Methods & Properties

 We have seen properties in all the forms
and components we have worked with.

 Examples:

 txtName1.Text
 txtName1.Visible

 So, how do we create and code
properties?  What do you think a property
is (in relation to a class)?

object

object

property
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Class Properties

 A property of a class is simply the value of
an internal variable of the class.

 Sometimes we want to set the value of
that variable from outside the class.

 At other times we want to get the value of
that variable from outside the class.

 Examples
 txtName1.Text = “A.N. Other”;
 myString = txtName1.Text;

get string value
from text box
property

set string value as
text box property
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Class Properties

 We don’t have to always both set and get
property values.  It just works out that
most of the time we want to do both.

 C# has treated this situation in a really
nice and consistent way.

 We use get and set code blocks to get and
set property values.
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Class Properties

 Example
public class DemoExample
{

private string name;

public string Name
{

get
{

return name;
}
set
{

name = value;
}

}
}

by convention we use caps
for the starting character -
the name is otherwise same 
as the private variable

just returns the current value
of the internal string

value is a magic value - it is
automatically the value the user
puts after the equals sign

name is private so not
available outside the
class
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Class Properties

 Example
public class DemoExample
{

private string name;

public string Name
{

get
{

return name;
}
set
{

name = value;
}

}
}

by convention we use caps
for the starting character -
the name is otherwise same 
as the private variable

just returns the current value
of the internal string

value is a magic value - it is
automatically the value the user
puts after the equals sign

name is private so not
available outside the
class
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Class Properties

class DemoExample

private string name;

public string Name
{
     get
     {
          return name;
     }
     set
     {
          name = value;
     }
}

DemoExample v;
string s;

s = v.Name;
v.Name = "demo";



Back to High Scores
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Back to HighScores

 There are at least two changes we may
think about making to our HighScores class.

 Any ideas?
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Back to HighScores

 There are at least two changes we may
think about making to our HighScores class.

 The method Show() should probably be a
property Result.  Why?

 When we instantiate the object (with Start),
maybe we should be able to give it a string
that informs the object the name of the
game for which it is keeping the scores.
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Back to HighScores

 The way we implemented Show in the
current version of HighScores is too rigid.

 Show was implemented as a method, and
the method formats the result string and
then displays it using a message box.

 What if we don’t want to display the results
in a message box?  We have no choice.
The result is available only that way.
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Back to HighScores

 It is much more versatile to implement
Show as a property - let’s call it Result.

 It requires no set, just a get.
public string Result
{

get
{

const int nameLength = 15;
string display, s;
display = "High Scores\n";
for (int i = 0; i <= length-1; i++)
{

s = hsArray[i].name;
while (s.Length < nameLength) s += " ";
s += "\t" + hsArray[i].score + "\n";
display += s;

}
result = display;
return result;

}
}

private string result;
declared in the class
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Back to HighScores

 What about including a title for the name
of the game at the time of instantiation?

 Think about it - we’ll do it next time.


