
Objects and Classes

Engineering 1D04, Teaching
Session 9

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 1

Recap - Classes & Objects
 class hsRecord
 {
 public string name;
 public int score;
 }

Class declaration
defines a complex
data structure

hsRecord myRef;
myRef = new hsRecord();

hsRecord[] highScore = new hsRecord[3];

name score

Instantiation of hsRecord
is an object

name score

name score

name score

0

1

2

void addScore(string newName,
 int newScore)
{
…\\uses highScore etc
}

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 2

General Classes & Objects

 We have seen how classes can
encapsulate data structures.

 This lets us group differently typed
variables into a single record.

 Well - it’s even better than that
 Classes can encapsulate data structures

and methods that work with those data
structures, into a single entity.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 3

General Classes & Objects
 class hsRecord
 {
 public string name;
 public int score;
 }

hsRecord[] highScore = new hsRecord[3];

public void addScore(string newName, int newScore)
{

…
}

public void show()
{

…
}

Class HighScore

private data

public methods

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 4

General Classes & Objects
 class hsRecord
 {
 public string name;
 public int score;
 }

hsRecord[] highScore = new hsRecord[3];

public void addScore(string newName, int newScore)
{

…
}

public void show()
{

…
}

Class HighScore

private data

public methods

cannot access
from outside the
class

only way to
access internal
data structures
from outside the
class

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 5

General Classes & Objects
 class hsRecord
 {
 public string name;
 public int score;
 }

hsRecord[] highScore = new hsRecord[3];

public void addScore(string newName, int newScore)
{

…
}

public void show()
{

…
}

Class HighScore

So, what do
users
of the class see?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 6

General Classes & Objects

public void addScore(string newName, int newScore)

public void show()

Class HighScore

This!

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 7

General Classes & Objects

 Before we see how we can construct such
a class, let’s discuss why it could be
useful.

 So - why?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 8

General Classes & Objects

 Before we see how we can construct such
a class, let’s discuss why it could be
useful.

 Encapsulation - protecting data
structures from being accessed from
outside the class is crucial. Why?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 9

General Classes & Objects

 Before we see how we can construct such
a class, let’s discuss why it could be
useful.

 Encapsulation - protecting data
structures from being accessed from
outside the class is crucial.
 users cannot modify internal data
 users cannot use information about how

internal data structures work

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 10

General Classes & Objects

 Before we see how we can construct such
a class, let’s discuss why it could be
useful.

 Multiple instances - the class can be
instantiated multiple times and each
instance is its own unique object. This
way, it would require very little extra code
to be able to store more than one set of
high scores.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 11

General Classes & Objects

 Example

Instantiate
first set:
hs1 = new HighScore();

hs1.add(n1,s1);

hs1.show();

Instantiate second set:
 hs2 = new HighScore();

hs2.add(n2,s2);

hs2.show();

txtName1 txtName2

txtScore2txtScore1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 12

General Classes & Objects

 Example

Instantiate
first set:
hs1 = new HighScore();

hs1.add(n1,s1);

hs1.show();

Instantiate second set:
 hs2 = new HighScore();

hs2.add(n2,s2);

hs2.show();

txtName1 txtName2

txtScore2txtScore1

aside: we can set each game up in
a group. This groups components
together as shown.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 13

General Classes & Objects

 Example

Instantiate
first set:
hs1 = new HighScore();

hs1.add(n1,s1);

hs1.show();

Instantiate second set:
 hs2 = new HighScore();

hs2.add(n2,s2);

hs2.show();

what else do we need
to know/do to get this to work?

txtName1 txtName2

txtScore2txtScore1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 14

General Classes & Objects

 Example

Instantiate
first set:
hs1 = new HighScore();

hs1.add(n1,s1);

hs1.show();

Instantiate second set:
 hs2 = new HighScore();

hs2.add(n2,s2);

hs2.show();

declare:
HighScore hs1, hs2;

n1=txtName1.Text
s1=txtScore1.Text

n2=txtName2.Text
s2=txtScore2.Text

txtName1 txtName2

txtScore2txtScore1

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 15

General Classes & Objects

 Back to the class - HighScore
 We can use declarations we already

developed for the earlier version.
 We also developed the algorithms for add

and show - and we can use them also.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 16

General Classes & Objects
public class HighScore
{

private class hsRecord
{

public string name;
public int score;

}

private const int maxElements = 10;
private hsRecord[] hsArray = new hsRecord[maxElements];
private int length;

public bool add(string newName, int newScore)
{

. . .
}

public void show()
{

. . .
}

}

no room to show this here

no room to show this here

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 17

General Classes & Objects
public class HighScore
{

private class hsRecord
{

public string name;
public int score;

}

private const int maxElements = 10;
private hsRecord[] hsArray = new hsRecord[maxElements];
private int length;

public bool add(string newName, int newScore)
{

. . .
}

public void show()
{

. . .
}

}

no room to show this here

no room to show this here

public

public

public

private

private

private
private

public
public

public

private

available outside the
class

NOT available outside
the class

public what about this one?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 18

General Classes & Objects
public class HighScore
{

private class hsRecord
{

public string name;
public int score;

}

private const int maxElements = 10;
private hsRecord[] hsArray = new hsRecord[maxElements];
private int length;

public bool add(string newName, int newScore)
{

. . .
}

public void show()
{

. . .
}

}

no room to show this here

no room to show this here

public

public

public

private

private

private
private

public
public

available outside hsRecord
but not outside HighScore

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 19

General Classes & Objects
public bool add(string newName, int newScore)
{
 int j, mark;

hsRecord newRecord;

newRecord = new hsRecord();
newRecord.score = newScore;
newRecord.name = newName;

 if (length < maxElements)
{

hsArray[length] = newRecord;
length++;

}

mark = 0;
while (mark <= length - 1 &&
 hsArray[mark].score >= newScore) mark++;

if (mark <= length - 1)
{

for (j = length - 1; j > mark; j--)
hsArray[j] = hsArray[j - 1];

hsArray[mark] = newRecord;
}
return ((length < maxElements) || (mark <= length - 1));

}

a small change:
add returns a boolean value.
True ⇒ record was added
 because score was
 good enough
False ⇒ record was not added
 because score was
 not good enough

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 20

General Classes & Objects

public void show()
{

const int nameLength = 15;

string displayString, s;

displayString = "High Scores\n";
for (int i = 0; i <= length-1; i++)
{

s = hsArray[i].name;
while (s.Length < nameLength) s += " ";
s += "\t" + hsArray[i].score + "\n";
displayString += s;

}
MessageBox.Show(displayString);

}

show displays the
current high scores
in a message box

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 21

General Classes & Objects

 Once we have the class set up, we can
concentrate on using it to implement the
behaviour on our form.

 If we want two instances of the class (we
need them to manage each of the two
high score lists we want to maintain) we
have to declare two variables of that type:
 HighScore hs1, hs2;

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 22

General Classes & Objects

private void btnStart1_Click(object sender, EventArgs e)
{

hs1 = new HighScore();
}

private void btnAdd1_Click(object sender, EventArgs e)
{

if (hs1.add(txtName1.Text,
 Convert.ToInt32(txtScore1.Text)))

 lblAdded1.Text = txtName1.Text + " added";
else lblAdded1.Text = txtName1.Text + " not added";

}

private void btnShow1_Click(object sender, EventArgs e)
{

hs1.show();
}

For Game One Scores:

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 23

General Classes & Objects

private void btnStart2_Click(object sender, EventArgs e)
{

hs2 = new HighScore();
}

private void btnAdd2_Click(object sender, EventArgs e)
{

if (hs2.add(txtName2.Text,
 Convert.ToInt32(txtScore2.Text)))

 lblAdded2.Text = txtName2.Text + " added";
else lblAdded2.Text = txtName2.Text + " not added";

}

private void btnShow2_Click(object sender, EventArgs e)
{

hs2.show();
}

For Game Two Scores:

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 24

Examples with Game One

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 25

Examples with Game One

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 26

Examples with Game One

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 27

Examples with Game One

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 28

Using the Class
namespace High_Score_Class
{
 public partial class Form1 : Form
 {
 HighScore hs1, hs2;

 public Form1() {
 InitializeComponent();
 }
 private void btnStart1_Click(object sender, EventArgs e) {
 . . .
 }
 private void btnAdd1_Click(object sender, EventArgs e) {
 . . .
 }
 private void btnShow1_Click(object sender, EventArgs e) {
 . . .
 }
 private void btnStart2_Click(object sender, EventArgs e) {
 . . .
 }
 private void btnAdd2_Click(object sender, EventArgs e) {
 . . .
 }
 private void btnShow2_Click(object sender, EventArgs e) {
 . . .
 }
 }
 public class HighScore
 {
 . . .
 }
}

HighScore

Form uses
HighScore

class

references to objects declared

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 29

More of the Example

Two separate high score systems operating

trying
to add
a score
of 10

now
click
Add

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 30

More of the Example

a score
of 10
was not
enough

Two separate high score systems operating

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 31

More of the Example

after clicking
Show for
Game One

after clicking
Show for
Game Two

User Interface Considerations

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 32

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 33

User Interface

 There are some fine points concerning
the user interface we should consider.

 Note - this is just another aspect of
algorithms. The user interface has to be
considered in our solution algorithms.

1. When we click on a button we need to
consider what component should have
the focus (i.e. what should be “live”).

2. How do we help the user not to click an
inappropriate button?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 34

User Interface

1. We can specify that a component has
the focus by using the method Focus().
So, after clicking Add in the Game One
group, we could set the focus to the
name text box by txtName1.Focus()

2. A better set up of components would be
the following: In each group, make all
components not visible initially - except
Start. If Start is clicked, make Start not
visible, make all others visible.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 35

private void btnAdd1_Click(object sender, EventArgs e)
{

if (hs1.add(txtName1.Text,
 Convert.ToInt32(txtScore1.Text)))

lblAdded1.Text = txtName1.Text + " added";
else lblAdded1.Text = txtName1.Text + " not added";
txtName1.Text = "";
txtScore1.Text = "";
txtName1.Focus();

}

User Interface

 Example for the button Add

clear text boxes

move focus

Class Methods and Properties

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 36

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 37

Class Methods & Properties

 We have already seen methods of
classes. In our example we used two
methods: add and show.

 The methods give users of the class
access to internal variables, but protects
those variables from unauthorized
modification.

 We have also seen properties. Where?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 38

Class Methods & Properties

 We have seen properties in all the forms
and components we have worked with.

 Examples:

 txtName1.Text
 txtName1.Visible

 So, how do we create and code
properties? What do you think a property
is (in relation to a class)?

object

object

property

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 39

Class Properties

 A property of a class is simply the value of
an internal variable of the class.

 Sometimes we want to set the value of
that variable from outside the class.

 At other times we want to get the value of
that variable from outside the class.

 Examples
 txtName1.Text = “A.N. Other”;
 myString = txtName1.Text;

get string value
from text box
property

set string value as
text box property

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 40

Class Properties

 We don’t have to always both set and get
property values. It just works out that
most of the time we want to do both.

 C# has treated this situation in a really
nice and consistent way.

 We use get and set code blocks to get and
set property values.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 41

Class Properties

 Example
public class DemoExample
{

private string name;

public string Name
{

get
{

return name;
}
set
{

name = value;
}

}
}

by convention we use caps
for the starting character -
the name is otherwise same
as the private variable

just returns the current value
of the internal string

value is a magic value - it is
automatically the value the user
puts after the equals sign

name is private so not
available outside the
class

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 42

Class Properties

 Example
public class DemoExample
{

private string name;

public string Name
{

get
{

return name;
}
set
{

name = value;
}

}
}

by convention we use caps
for the starting character -
the name is otherwise same
as the private variable

just returns the current value
of the internal string

value is a magic value - it is
automatically the value the user
puts after the equals sign

name is private so not
available outside the
class

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 43

Class Properties

class DemoExample

private string name;

public string Name
{
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
}

DemoExample v;
string s;

s = v.Name;
v.Name = "demo";

Back to High Scores

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 44

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 45

Back to HighScores

 There are at least two changes we may
think about making to our HighScores class.

 Any ideas?

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 46

Back to HighScores

 There are at least two changes we may
think about making to our HighScores class.

 The method Show() should probably be a
property Result. Why?

 When we instantiate the object (with Start),
maybe we should be able to give it a string
that informs the object the name of the
game for which it is keeping the scores.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 47

Back to HighScores

 The way we implemented Show in the
current version of HighScores is too rigid.

 Show was implemented as a method, and
the method formats the result string and
then displays it using a message box.

 What if we don’t want to display the results
in a message box? We have no choice.
The result is available only that way.

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 48

Back to HighScores

 It is much more versatile to implement
Show as a property - let’s call it Result.

 It requires no set, just a get.
public string Result
{

get
{

const int nameLength = 15;
string display, s;
display = "High Scores\n";
for (int i = 0; i <= length-1; i++)
{

s = hsArray[i].name;
while (s.Length < nameLength) s += " ";
s += "\t" + hsArray[i].score + "\n";
display += s;

}
result = display;
return result;

}
}

private string result;
declared in the class

© Copyright 2006 David Das, Ryan Lortie, Alan Wassyng 49

Back to HighScores

 What about including a title for the name
of the game at the time of instantiation?

 Think about it - we’ll do it next time.

