Name
Student Number

Software Engineering 2A04

Answer Key
DAY CLASS Dr. William M. Farmer
DURATION OF EXAMINATION: 3 Hours
MCMASTER UNIVERSITY FINAL EXAMINATION December 2001

(1) [2 pts.] The professional responsibilities of a software engineer are essentially the same
as the professional responsibilities of any other kind of engineer. Is this statement true
or false?

A)

B.) False.
(2) [2 pts.] Suppose that P is a guarded program list of the form

If G4,...,G, cover all cases and there is some ¢ with 1 <4 < n such that the program
P; satisfies the specification S when G; is true, then P satisfies S. Is this statement
true or false?

A.) True.

B.)

(3) [2 pts.] Procedures defined using recursion are not generally as space efficient as pro-
cedures defined using iteration. Is this statement true or false?

A)

B.) False.

(4) [2 pts.] An actual description of a product is intended to describe the attributes that
the product is required to possess. Is this statement true or false?

A.) True.

B.)

(5) [2 pts.] The “secret” of a module is its interface. Is this statement true or false?

A.) True.

B.)

Continued on page 2

Software Engineering 2A04 Final Exam Page 2 of 15

(6) [2 pts.] An exception is usually defined as an event that causes a program to abort. Is
this statement true or false?

A.) True.

B.)

(7) [2 pts.] The wider the scope of a variable, the more descriptive its name needs to be.
Is this statement true or false?

A)

B.) False.

(8) [2 pts.] Wild random testing is good for checking the reliability of a software product.
Is this statement true or false?

A.) True.

B.)

(9) [2 pts.] According to Frederick Brooks’s mythical man-month idea, the worst way to
help a software project that is behind schedule is to

A)) ‘Add more workers to the project team.

B.) Reschedule the project over a longer period of time.
C.) Cut back on the goals of the project.
D.)

Reuse completed work from other projects.

(10) [2 pts.] The idea behind Harlan Mill’s surgical team proposal for software development
is that

A.) Fluff in a software product must be surgically removed.

B.) | With the right kind of development team, the benefits of a one-person team can
be realized on a project too big for one person.

C.) A development team should have only one leader.

D.) Serious design flaws in a software product are best fixed by a small repair team
lead by an experienced software “surgeon”.

(11) [2 pts.] According to Brooks, why should one plan to throw away the first implemen-
tation of a product?

A.) The first implementation will usually not use the latest technology.
B.) The first implementation will have many bugs that can never be found.

C.) After seeing the first implementation, the client will usually ask for a completely
new implementation.

D.) |In one way or another, the first implementation will eventually be thrown away
anyway.

Continued on page 3

Software Engineering 2A04 Final Exam Page 3 of 15

(12) [2 pts.] According to Brooks, what is the most important consideration in system
design?

Ease of use.

‘ Conceptual integrity.

A)
B.) Ease of implementation.
C.)
D.) Cost of design materials.

(13) [2 pts.] How many interface functions are in the rectangle module for Lab Exercise 27

= T

Q w »

)
)
)
D.)

= 00

8.

(14) [2 pts.] In Lab Exercise 4, what value is returned when rectangle(n) is executed
immediately after START (n) is executed?

A) -1.

B.) 0.

C.)
D.) TRUE.

(15) [2 pts.] In Lab Exercise 5, if GA(n) returns the value 4, which “S” procedure was called
most recently?

(16) [2 pts.] The rectangle module of Lab Exercise 3 can store at most rectangles at
the same time.

Continued on page 4

Software Engineering 2A04 Final Exam Page 4 of 15

(17) [2 pts.] In Lab Exercise 4, the interface procedure GW will never return the value

A.)
B.) -1
C) L
D.) 2.

(19) [2 pts.] Which software structure is useful for dividing a product into subproducts
(i.e, subsets of the product)?

Data flow.

State transition.

‘Uses hierarchy.
All of the above.

Al)
B.)
C)
D.)

(20) [2 pts.] Which kind of function specification is always deterministic?

A)
B.) Relational.
C.) Axiomatic.
D.) All of the above.
(21) [2 pts.] Any that satisfies the should be acceptable.

Design, requirements.

)
.) Implementation, design.
)
)

Continued on page 5

Software Engineering 2A04 Final Exam Page 5 of 15

(22) [2 pts.] Software testing can usually be used to show the of a software product.

Correctness.

Trustworthiness.

A)
B.) |Incorrectness. |
C.)

D.) All of the above.

(23) [2 pts.] Development is performed in a top-down manner in the software “lifecycle”
model.

)
.) Incremental.
)
)

A.) Greybox testing an implementation of the MIS.

B.) Clearbox testing an implementation of the MIS.

C.) Simulating an implementation of the MIS.

D.) ‘Mathematlcally verifying that an implementation satisfies the MIS.
(25) [2 pts.] As a data structure, a constant has mutators.

A)

B.) 1.

C.) More than 1.

D.) More than 2.

(26) [2 pts.] It is often useful to view a procedure with side effects as a

Turing machine.

A

B.) |Finite state machine. |

C.) An expression in a language.
D.)

As the proof of a formula.

Continued on page 6

Software Engineering 2A04 Final Exam

(27) [2 pts.] Suppose an Oberon module includes the following declarations:

VAR y: REAL;
PROCEDURE Achilles(VAR x: REAL);
BEGIN

x := -1;
END Achilles;

Then Achilles(y) is a

Call by name.

‘ Call by reference.

A)
B.) Call by value.
C)
D.) Call by variation.

(28) [2 pts.] Which of the following statements is true?

A) Iz:Z.0#zAhcxz=x+1x)=2.

B.) Az:Z.x—vy)(y)=0.

C.) —6 <if(A, —4,4) < 6 where A is some formula.
D.) [All of the above. |

Page 6 of 15

(29) [2 pts.] The interface for the lists abstract data type (ADT) presented in class includes

PROCEDURE Member(i: INTEGER, k: List): INTEGER;

This interface function is a for the ADT.

A lambda expression Az : « . t.

)

.) [An Oberon IF statement. |

) An Oberon procedure declaration.
)

An Oberon module declaration.

Continued on page 7

Software Engineering 2A04 Final Exam Page 7 of 15

(31) [5 pts.] In class we discussed the following interface for an abstract data type (ADT)
of stacks:

TYPE Stack;

CONST Bottom: Stack;

PROCEDURE Push(i: INTEGER, s: Stack): Stack;
PROCEDURE Top(s: Stack): INTEGER;

PROCEDURE Pop(s: Stack): Stack;

Using the interface functions of this interface, write a full Oberon procedure declared
as

PROCEDURE Reverse(s: Stack): Stack;

that, given a stack s as input, returns a stack that contains the members of s in reverse
order.

Answer:

PROCEDURE Reverse(s: Stack): Stack;
VAR s1: Stack;
BEGIN
sl := Bottom;
WHILE s # Bottom DO
s1 := Push(Top(s),sl)

s := Pop(s);
END;
RETURN s1i;

END Reverse;

(32) [5 pts.] Write an interface for an Oberon module for an abstract data type (ADT) of
2-dimensional vectors. The interface functions of the interface should include:

A.) A constructor that, given two REAL numbers z and y, returns a vector whose
coordinates are z and y.

B.) Appropriate selectors.
C.) An interface function for adding two vectors.

D.) An interface function for multiplying a vector by a REAL number.

Continued on page 8

Software Engineering 2A04 Final Exam Page 8 of 15

Answer:

TYPE Vector;

PROCEDURE Make(x,y: REAL): Vector;

PROCEDURE GetX(v: Vector): REAL;

PROCEDURE GetY(v: Vector): REAL;

PROCEDURE Add(u,v: Vector): Vector;

PROCEDURE Muliply(x: REAL; v: Vector): Vector;

(33) [10 pts.] Below is a before/after MIS for a module that stores a set of REALs. Also
below is an Oberon module that is intended to implement the MIS by representing the
set as a linked list. The Oberon module contains 5 mistakes. Circle the lines of code
that contain the mistakes. 2 points will be awarded if a circle contains a mistake. Only
the first 5 circles will be considered; the rest will be ignored. Any circle that contains
more than one line will also be ignored.

Before/after MIS:

A.) Imported modules: none.

B.) Interface:

PROCEDURE Reset();

PROCEDURE Empty(): BOOLEAN;
PROCEDURE IsMember(r: REAL): BOOLEAN;
PROCEDURE Adjoin(r: REAL);

PROCEDURE Remove (r: REAL): BOOLEAN

C.) Exceptions: none
D.) State constants: none
E.) State variables: S : sets(REAL) (initially S is the empty set ()
F.) Behavior rules:
‘ Name ‘ Input ‘ Output ‘ Transition ‘

Reset S'=10

Empty S=10

IsMember | 7 :REAL | r € S

Adjoin r : REAL S'=Su{r}

Remove r:REAL | r € S S'=S—-{r}

Continued on page 9

Software Engineering 2A04 Final Exam Page 9 of 15

Oberon implementation with mistakes:
MODULE Set;
(* INTERFACE *)

(*

PROCEDURE Reset();

PROCEDURE Empty(): BOOLEAN;
PROCEDURE IsMember (r: REAL): BOOLEAN;
PROCEDURE Adjoin(r: REAL);

PROCEDURE Remove (r: REAL): BOOLEAN;
*)

(* IMPLEMENTATION *)

TYPE LinkedList = POINTER TO LinkedListRec;
LinkedListRec =
RECORD
item: REAL;
next: LinkedList;
END;

VAR set: LinkedList; (* Set as a linked list *)

PROCEDURE Reset*();
BEGIN
set := NIL;
END Reset;

PROCEDURE Empty*(): BOOLEAN;
BEGIN
RETURN set = 0;
END Empty;

PROCEDURE IsMember*(r: REAL): BOOLEAN;
VAR p: LinkedList;
BEGIN

P := set;
WHILE p # NIL DO
IF p~.item = r THEN
RETURN TRUE;
ELSE
p := p~.next;
END;
END;
RETURN TRUE;
END IsMember;

Continued on page 10

Software Engineering 2A04 Final Exam

PROCEDURE Adjoin*(r: REAL);
VAR p: LinkedList;
BEGIN
NEW(p);
p~.item := r;
P~ .next := set;
set := p;
END Adjoin;

PROCEDURE Remove*(r: REAL): BOOLEAN;
VAR pl1,p2: LinkedList;

BEGIN
pl := NIL;
P2 := set;

WHILE p2 # NIL DO
IF p2~.item = r THEN
IF p1 = NIL THEN
set := pl~.next;

ELSE
Pl”.next := p2~.next;
END;
RETURN TRUE;
ELSE
pl := pl~.next;
P2 := p2~.next;
END;
END;
RETURN FALSE;
END Remove;
BEGIN
Empty) ;
END Set.

Page 10 of 15

Continued on page 11

Software Engineering 2A04 Final Exam Page 11 of 15

Corrected Oberon implementation:
MODULE Set;
(* INTERFACE *)

(*

PROCEDURE Reset();

PROCEDURE Empty(): BOOLEAN;
PROCEDURE IsMember (r: REAL): BOOLEAN;
PROCEDURE Adjoin(r: REAL);

PROCEDURE Remove(r: REAL): BOOLEAN

*)

(* IMPLEMENTATION *)

TYPE LinkedList = POINTER TO LinkedListRec;
LinkedListRec =
RECORD
item: REAL;
next: LinkedList;
END;

VAR set: LinkedList; (* Set as a linked list *)

PROCEDURE Reset*();
BEGIN
set := NIL;
END Reset;

PROCEDURE Empty*(): BOOLEAN;
BEGIN
RETURN set = NIL;
END Empty;

PROCEDURE IsMember*(r: REAL): BOOLEAN;
VAR p: LinkedList;
BEGIN

P := set;
WHILE p # NIL DO
IF p~.item = r THEN
RETURN TRUE;
ELSE
p := p~.next;
END;
END;
RETURN FALSE;
END IsMember;

Continued on page 12

Software Engineering 2A04 Final Exam

PROCEDURE Adjoin*(r: REAL);
VAR p: LinkedList;
BEGIN
NEW(p);
p~.item := r;
P~ .next := set;
set := p;
END Adjoin;

PROCEDURE Remove*(r: REAL): BOOLEAN;
VAR pl1,p2: LinkedList;

BEGIN
pl := NIL;
P2 := set;

WHILE p2 # NIL DO
IF p2~.item = r THEN
IF p1 = NIL THEN
set := p2~.next;

ELSE
Pl”.next := p2~.next;
END;
RETURN TRUE;
ELSE
pl := p2;
P2 := p2~.next;
END;
END;
RETURN FALSE;
END Remove;
BEGIN
Reset();
END Set.

Page 12 of 15

Continued on page 13

Software Engineering 2A04 Final Exam Page 13 of 15

(34) [20 pts.] Below is a before/after MIS for a module that stores a number of bank ac-
counts. Write a complete Oberon module named Bank that implements the MIS. Points
will be taken off for any irrelevant extra code.

Before/after MIS:

A.) Imported modules: none.

B.) Interface:

PROCEDURE Balance(n: INTEGER): REAL;
PROCEDURE Deposit(n: INTEGER; r: REAL);
PROCEDURE Withdraw(n: INTEGER; r: REAL);
C.) Exceptions: BadArgs : BOOLEAN
D.) State constants:

capacity : INTEGER (0 < capacity).
penalty : REAL (0 < penalty).

E.) State variables: b : ARRAY capacity OF REAL
Initially, V4 : INTEGER . 0 < 4 < capacity D b[i] = 0.

F.) Behavior rules:

Balance
Input n : INTEGER
Output b[n]
Transition

Exception | n < 0 V capacity <n D BadArgs

Deposit
Input n : INTEGER, r : REAL
Output
Transition | &'[n] = b[n] +r

AV i : INTEGER . i # n D b'[i] =~ b[i]
Exception | n <0 V capacity <n V r <0 D BadArgs

Withdraw
Input n : INTEGER, r : REAL
Output
Transition | &'[n] = b[n| — if(r < b[n], r, penalty)

AV i :INTEGER . i # n D b'[i] ~ b[i]

Exception | n < 0 V capacity <n V r <0 D BadArgs

Recall that ¢ ~ b means ¢ = b or both a and b are undefined.

Continued on page 14

Software Engineering 2A04 Final Exam Page 14 of 15

Answer:

MODULE Bank;
IMPORT Qut;
(* INTERFACE *)

(*

PROCEDURE Balance(n: INTEGER): REAL;
PROCEDURE Deposit(n: INTEGER; r: REAL);
PROCEDURE Withdraw(n: INTEGER; r: REAL);
*)

(* IMPLEMENTATION *)

CONST capacity = 5000; (* Number of bank accounts *)
penalty = 8.50; (* Penalty for insufficient funds *)
VAR b: ARRAY capacity OF REAL; (* Array of bank accounts *)

PROCEDURE BadArgsException();
BEGIN
Out.String("Insufficient funds!");
END BadArgsException;

PROCEDURE Init();
VAR i: INTEGER;
BEGIN
FOR i := 0 TO capacity - 1 DO
b[i] := 0;
END;
END Init;

PROCEDURE Balance*(n: INTEGER): REAL;
BEGIN
IF (n < 0) OR (capacity <= n) THEN
BadArgsException() ;
ELSE
RETURN b[n];
END;
END Balance;

Continued on page 15

Software Engineering 2A04 Final Exam

PROCEDURE Deposit*(n: INTEGER; r: REAL);
BEGIN
IF (n < 0) OR (capacity <= n) OR (r <= 0) THEN
BadArgsException() ;
ELSE
b[n] := b[n] + r;
END;
END Deposit;

PROCEDURE Withdraw*(n: INTEGER; r: REAL);
BEGIN
IF (n < 0) OR (capacity <= n) OR (r <= 0) THEN
BadArgsException() ;
ELSE
IF r <= b[n] THEN
bln] := b[n] - r;
ELSE
b[n]
END;
END;
END Withdraw;

b[n] - penalty;

BEGIN
Init();
END Bank.

The End

Page 15 of 15

