

Name _____

Student number _____

SE 2A04 Fall 2001

Surprise Quiz 1 Answer Key

Instructor: W. M. Farmer

Revised: 5 November 2001

You have 20 minutes to complete this quiz consisting of 3 pages and 10 questions. You may use your notes and textbooks. Circle the *best* answer for the multiple choice questions. Recall that the \supset symbol denotes implication. Each question is worth 10 points. Good luck!

(1) Let a denote an integer. What is the value of

$$\text{if}(a > 2 \supset a > 0, 17, 19) \text{ ?}$$

- (a) 2.
- (b) 0.
- (c) 17.
- (d) 19.

(2) Let r denote a real number. What is the value of

$$(\lambda x : \mathbf{R} . x^2)(r) \text{ ?}$$

- (a) $(\lambda x : \mathbf{R} . r^2)$.
- (b) $(\lambda r : \mathbf{R} . r^2)$.
- (c) r^2 .
- (d) x^2 .

(3) Let **Push**, **Top**, **Pop** be members of the Stacks interface (as given in class); i, j be of type **Integer**; and s be of type **Stack**. What is the value of

$$\text{Top}(\text{Push}(j, \text{Pop}(\text{Push}(i, s)))) \text{ ?}$$

- (a) **Push**.
- (b) s .
- (c) i .
- (d) j .

Test continues on next page.

1/3

(4) Let x and y denote real numbers. Which expression denotes the minimum of x and y ?

- (a) $-\max(x, y)$.
- (b) $\text{if}(x \leq y, y, x)$.
- (c) $\text{if}(x \geq y, x, y)$.
- (d) $\boxed{\text{if}(x \leq y, x, y)}$.

(5) Let a be a real number and S be a set of real numbers. Which statement says that a is an upper bound of S ?

- (a) $\forall x : \mathbf{R} . x \leq a$.
- (b) $\boxed{\forall x : \mathbf{R} . x \in S \supset x \leq a}$.
- (c) $\exists x : \mathbf{R} . x \in S \wedge x \leq a$.
- (d) $\exists x : \mathbf{R} . x \in S \wedge x < a$.

(6) Which statement says that **Push** is a one-to-one function?

- (a) $\forall i_1, i_2 : \text{INTEGER}, s_1, s_2 : \text{Stack} .$
 $\boxed{\text{Push}(i_1, s_1) = \text{Push}(i_2, s_2) \supset (i_1 = i_2 \wedge s_1 = s_2)}$.
- (b) $\forall i_1, i_2 : \text{INTEGER}, s_1, s_2 : \text{Stack} .$
 $(i_1 = i_2 \wedge s_1 = s_2) \supset \text{Push}(i_1, s_1) = \text{Push}(i_2, s_2)$.
- (c) $\forall t : \text{Stack} . \exists i : \text{INTEGER}, s : \text{Stack} . t = \text{Push}(i, s)$.
- (d) $\exists i : \text{INTEGER}, s : \text{Stack} . \text{Push}(i, s)$.

(7) Which relation describes a function from the integers to the real numbers?

- (a) $\{(x, y) \in \mathbf{Z} \times \mathbf{R} \mid x \leq y\}$.
- (b) $\{(x, y) \in \mathbf{R} \times \mathbf{R} \mid y = x * x\}$.
- (c) $\boxed{\{(x, y) \in \mathbf{Z} \times \mathbf{R} \mid y = x + 17\}}$.
- (d) $\{(x, y) \in \mathbf{Z} \times \mathbf{R} \mid 19 = 19\}$.

(8) Let \mathbb{N} denote the natural numbers. Which statement defines

$$f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$$

by recursion to be natural number multiplication?

- (a) $\forall x, y : \mathbb{N} . f(x, y) = f(x - 1, y + 1)$.
- (b) $f = \lambda x, y : \mathbb{N} . \text{if}(x = 0, x, y)$.
- (c) $\boxed{\forall x, y : \mathbb{N} . f(x, y) = \text{if}(x = 0, 0, y + f(x - 1, y))}$.
- (d) $\forall x, y : \mathbb{N} . x * y$.

(9) Let m be an Oberon array of type **REAL** indexed from 0 to 999. Which statement says exactly that the members of m indexed from 17 to 313 (inclusive) are ordered from greatest to least?

(a)
$$\forall i, j : \text{INTEGER} . (17 \leq i \wedge i \leq 313 \wedge 17 \leq j \wedge j \leq 313 \wedge i \leq j) \supset m[i] \geq m[j].$$

(b) $\forall i : \text{INTEGER} . (17 \leq i \wedge i \leq 313) \supset m[i] \geq m[i + 1].$

(c) $\forall i : \text{INTEGER} . m[i] \geq m[i + 1].$

(d) $\forall i : \text{INTEGER} . m[i - 1] \geq m[i + 1].$

(10) Which expression denotes the cubic root of 139?

(a) $139 * 139 * 139.$

(b) $\forall x, y : \mathbf{R} . x < 139^3 < y.$

(c) $\exists x : \mathbf{R} . x * x * x = 139.$

(d)
$$\boxed{\text{I} x : \mathbf{R} . x * x * x = 139.}$$