Name

Student number

SE 2A04 Fall 2001

Surprise Quiz 2 Answer Key
Instructor: W. M. Farmer

You have 20 minutes to complete this quiz consisting of 3 pages and 1
question. Good luck!

Below is a before/after MIS for a module that stores an abstract array of
REALSs. Also below is an Oberon module that is intended to implement the
MIS by representing the abstract array as a linked list. The Oberon module
contains 10 mistakes (some are purely mistakes of syntax). Circle the lines
of code that contain the mistakes according to the following rules:

(1) 10 points will be awarded if a circle contains a mistake.

(2) 5 points will be deducted if a circle does not contain a mistake.
(3) A circle that contains more than one line will be ignored.
(4)

4) If there are z > 10 circles, 10 - (z — 10) points will be deducted.

Before/after MIS:
(1) Imported modules: none.

(2) Interface:

PROCEDURE Construct(a: ARRAY OF REAL);
PROCEDURE Select(i: LONGINT): REAL;
PROCEDURE Mutate(i: LONGINT; r: REAL);

(3) Exceptions: BadIndex.
(4) State constants: none.

(5) State variables: array : LONGINT — REAL (initially array is the empty
function)

(6) Behavior rules:

‘ Name ‘ Input ‘ Output ‘ Transition ‘
Construct | a : ARRAY OF REAL array’ = A7 : LONGINT . afi]
Select i : LONGINT array(4)

Mutate 1 : LONGINT, array’ =
7 : REAL Aj : LONGINT .
if(¢ = j,r,array(j))




Oberon implementation with mistakes:

MODULE AbstractArray;
(* INTERFACE *)

(* PROCEDURE Comstruct(a: ARRAY OF REAL);
PROCEDURE Select(i: LONGINT): REAL;
PROCEDURE Mutate(i: LONGINT; r: REAL); *)

(* IMPLEMENTATION *)
(x Types *)

TYPE LinkedList = POINTER TO LinkedListRec;
LinkedListRec =
RECORD
item: REAL;
next: LinkedList;
END;

(* Variables *)

VAR array: LinkedListRec; (* Abstract array as a linked list *)
CONST length: LONGINT; (* Length of abstract array *)

(* Exceptions: *)

PROCEDURE BadIndexException();
BEGIN
HALT(33); (* Abort program *)
END BadIndexException;

(* Interface functions *)

PROCEDURE Construct*(a: ARRAY OF REAL);
VAR index: LONGINT;
p: LinkedList;
BEGIN
index := -1;
length := LEN(a);
WHILE index <= length DO
IF index = 0 THEN
p~.next := MakeRecord(al[index]);
array := p;
ELSE
p~.next := MakeRecord(al[index]);
P := p~.next;
END;
index := index + 1;
END;
END Construct;



PROCEDURE Select*(i: LONGINT): REAL;
VAR p: LinkedList;
BEGIN
p := FindRecord(i);
RETURN p~.item;
END Select;

PROCEDURE Mutatex(i: LONGINT; r: REAL);
VAR p: LinkedList;
BEGIN
p := FindRecord(i);
p~.item :=r;
RETURN p~.item;
END Mutate;

(* Local functions *)

PROCEDURE MakeRecord(r: REAL): LinkedList;
VAR p: LinkedList;

BEGIN
p := NEW(r);
p~.item := r;
p~ -next := NIL;
RETURN p;

END MakeRecord;

PROCEDURE FindRecord(i: LONGINT): LinkedList;
VAR index: LONGINT;
P: LinkedList;
BEGIN
IF (i < 0) OR (length <= i) THEN
BadIndexException();
ELSE
index := 0;
p:= array;
WHILE index < i DO
P := p~.previous;
index := index - 1;
END;
RETURN p;
END;
END FindRecord;

PROCEDURE Init();
BEGIN
array
length :
END Init;

0;
0;

BEGIN
Init();
END AbstractArray.



Corrected Oberon implementation:

MODULE AbstractArray;
(* INTERFACE *)

(* PROCEDURE Comstruct(a: ARRAY OF REAL);
PROCEDURE Select(i: LONGINT): REAL;
PROCEDURE Mutate(i: LONGINT; r: REAL); *)

(* IMPLEMENTATION *)
(x Types *)

TYPE LinkedList = POINTER TO LinkedListRec;
LinkedListRec =
RECORD
item: REAL;
next: LinkedList;
END;

(* Variables *)

VAR array: LinkedList; (* Abstract array as a linked list x)
length: LONGINT; (* Length of abstract array *)

(* Exceptions: *)

PROCEDURE BadIndexException();
BEGIN
HALT(33); (% Abort program *)
END BadIndexException;

(* Interface functions *)

PROCEDURE Construct*(a: ARRAY OF REAL);
VAR index: LONGINT;
p: LinkedList;
BEGIN
index := 0;
length := LEN(a);
WHILE index < length DO
IF index = 0 THEN
p := MakeRecord(alindex]);

array := p;

ELSE
p~.next := MakeRecord(al[index]);
P := p~.next;

END;

index := index + 1;

END;
END Construct;



PROCEDURE Select*(i: LONGINT): REAL;
VAR p: LinkedList;
BEGIN
p := FindRecord(i);
RETURN p~.item;
END Select;

PROCEDURE Mutatex(i: LONGINT; r: REAL);
VAR p: LinkedList;

BEGIN
p := FindRecord(i);
p~.item :=r;

END Mutate;

(* Local functions *)

PROCEDURE MakeRecord(r: REAL): LinkedList;
VAR p: LinkedList;

BEGIN
NEW (p) ;
p~.item := r;
p~ .next := NIL;
RETURN p;

END MakeRecord;

PROCEDURE FindRecord(i: LONGINT): LinkedList;
VAR index: LONGINT;
P: LinkedList;
BEGIN
IF (i < 0) OR (length <= i) THEN
BadIndexException();
ELSE
index := 0;
p:= array;
WHILE index < i DO
P := p~.next;
index := index + 1;
END;
RETURN p;
END;
END FindRecord;

PROCEDURE Init();
BEGIN
array
length :
END Init;

NIL;
0;

BEGIN
Init();
END AbstractArray.



