

Software Eng. 2AO4 - Software Design I - 2001

Laboratory 4

For weeks starting October 26 and November 2.

Laboratory 3 required 18 programs and dealt with just two rectangles. In this exercise, you are to repeat Laboratory 3 but implement your module so that you can store up to 100 different rectangles, each rectangle identified by an integer between 1 and 100 (inclusive). Initially there should be no rectangles stored.

Def: $ok(n) \equiv 0 < n \wedge n < 101$

1. A procedure, **S2P**, that takes 5 integer arguments: (n, x_0, y_0, x_1, y_1) . The first parameter, n , which must be between 1 and 100, identifies one of 100 possible rectangles. The next pair of arguments gives the (x, y) coordinates of the upper left corner of rectangle n . This procedure will return a value as specified by table 1 using the following definitions.

Def: $isrectangle \equiv x_0 < x_1 \wedge y_0 > y_1$

	return value
$\neg ok(n)$	-1
$ok(n) \wedge \neg isrectangle$	-2
$ok(n) \wedge isrectangle$	0

Table 1: Return value for S2P, SPHW, and SPHA

Additional effects of this procedure are defined in tables 2, 3, 4, 5, 6, 7, 8, and 9 below.

A procedure, **SPHW**, that takes 5 integer arguments: (n, x, y, h, w) representing a rectangle. The first parameter, n , which must be between 1 and 100, identifies one of 100 possible rectangles. The next pair of arguments gives the (x, y) coordinates of the upper left corner of the rectangle. The next pair gives the height and width of the rectangle. This procedure will return a value as specified by table 1 using the following definition. Additional effects of this procedure are defined in tables 2, 3, 4, 5, 6, 7, 8, and 9 below.

Def: $isrectangle \equiv h > 0 \wedge w > 0$

2. A procedure, **SPHA**, that takes 5 integer arguments: (n, x, y, h, s) representing a rectangle. The first parameter, n , which must be between 1 and 100, identifies one of 100 possible rectangles. The next pair of arguments gives the (x, y) coordinates of the upper left corner of the rectangle. The next pair gives the height and area of the rectangle. This procedure will return a value as specified by table 1 using the following definitions. Additional effects are defined in tables 2, 3, 4, 5, 6, 7, 8, and 9.

Def: $natural(x) \equiv x > 0 \wedge integer(x)$

Def: $isrectangle \equiv h > 0 \wedge natural(s/h)$

3. **START(n)** changes rectangle n to its initial state, i.e. no data stored. Return 0 if there was data stored previous to the call, -1 otherwise. Additional effects of this procedure are defined in tables 2, 3, 4, 5, 6, 7, 8, and 9 below.

4. A procedure **rectangle(n)**, where **n** should be an integer, that returns an boolean value as specified by the following table. Initially **rectangle(n)** returns **false** for all values of **n**.

Most recent call of an “S” procedure for n is	START(n)	S2P (n, x₀, y₀, x₁, y₁)	SPHW (n, x, y, h, w)	SPHA (n, x, y, h, s)
	false	$x_0 < x_1 \wedge y_0 > y_1$	$h > 0 \wedge w > 0$	$h > 0 \wedge$ natural(s/h)

Table 2: Value returned by rectangle(n)

5. A procedure **GA(n)** that takes one parameter, **n**, where **n** should be an integer between 1 and 100 and returns an integer value specified by the following table

Most recent call of an “S” procedure for ^a n is	START(n)	S2P (n, x₀, y₀, x₁, y₁)	SPHW (n, x, y, h, w)	SPHA (n, x, y, h, s)
$\neg \text{ok}(n) \vee \neg \text{rectangle}(n)$	-1	-1	-1	-1
$\text{ok}(n) \wedge \text{rectangle}(n)$	-2	$(x_1 - x_0) \times (y_0 - y_1)$	$h \times w$	s

Table 3: Values returned by GA

a. If the most recent S procedure call was **START(n)**, isrectangle will always be **false**. The definition of isrectangle is that given with each of the S procedures. **This note applies to tables 3 through 9.**

6. A procedure **GH(n)** that takes one parameter, **n**, where **n** should be an integer between 1 and 100 and returns an integer value specified by the following table

Most recent call of an “S” procedure for n is	START(n)	S2P (n, x₀, y₀, x₁, y₁)	SPHW (n, x, y, h, w)	SPHA (n, x, y, h, s)
$\neg \text{ok}(n) \vee \neg \text{rectangle}(n)$	-1	-1	-1	-1
$\text{ok}(n) \wedge \text{rectangle}(n)$	-2	$y_0 - y_1$	h	h

Table 4: Values returned by GH

7. A procedure $GW(n)$ that takes one parameter, n , where n should be an integer between 1 and 100 and returns an integer value specified by the following table

Most recent call of an “S” procedure for n is	START(n)	S2P (n, x_0, y_0, x_1, y_1)	SPHW (n, x, y, h, w)	SPHA (n, x, y, h, s)
$\neg ok(n) \vee \neg rectangle(n)$	-1	-1	-1	-1
$ok(n) \wedge rectangle(n)$	-2	$x_1 - x_0$	w	s/h

Table 5: Value returned by GW

8. Two procedures $GUL\psi(n)$ that takes one parameter, n , where n should be an integer between 1 and 100 and ψ may be either x or y , that return an integer value specified by the following table

Most recent call of an “S” procedure for n is	START(n)	S2P (n, x_0, y_0, x_1, y_1)	SPHW (n, x, y, h, w)	SPHA (n, x, y, h, s)
$\neg ok(n) \vee \neg rectangle(n)$	-1	-1	-1	-1
$ok(n) \wedge rectangle(n)$	-2	ψ_0	ψ_0	ψ_0

Table 6: Value returned by $GULx, GULy$

9. A procedure $GLRx(n)$ that takes one parameter, n , where n should be an integer between 1 and 100 and returns an integer value specified by the following table

Most recent call of an “S” procedure for n is	START(n)	S2P (n, x_0, y_0, x_1, y_1)	SPHW (n, x, y, h, w)	SPHA (n, x, y, h, s)
$\neg ok(n) \vee \neg rectangle(n)$	-1	-1	-1	-1
$ok(n) \wedge rectangle(n)$	-2	x_1	$x + w$	$x + s/h$

Table 7: Values returned by $GLRx$

10. A procedure $GLRy(n)$ that takes one parameter, n , where n should be an integer between 1 and 100 and returns an integer value specified by the following table

Most recent call of an “S” procedure for n is	START(n)	S2P (n, x_0, y_0, x_1, y_1)	SPHW (n, x, y, h, w)	SPHA (n, x, y, h, s)
$\neg ok(n) \vee \neg rectangle(n)$	-1	-1	-1	-1
$ok(n) \wedge rectangle(n)$	-2	y_1	$y - h$	$y - h$

Table 8: Values returned by $GLRy$

11. A procedure, $\text{overlap}(A, B)$, where A and B should both be an integer between 1 and 100. overlap must return an integer return value as described by the table below.

Def: $\text{ABok} \equiv \text{ok}(A) \wedge \text{ok}(B)$

	AinB	BinA	disjoint	overlap	AisB	tangent
$\text{ABok} \wedge \neg \text{rectangle}(A) \wedge \text{rectangle}(B)$	-1	-1	-1	-1	-1	-1
$\text{ABok} \wedge \neg \text{rectangle}(B) \wedge \text{rectangle}(A)$	-2	-2	-2	-2	-2	-2
$\neg \text{ABok} \vee (\text{ABok} \wedge \neg (\text{rectangle}(A) \vee \text{rectangle}(B)))$	-3	-3	-3	-3	-3	-3
$\text{ABok} \wedge \text{rectangle}(A) \wedge \text{rectangle}(B)$	1	2	3	4	5	6

Table 9: Return value for procedure overlap(A,B)

The definitions of AinB, BinA, disjoint, overlap, AisB, and tangent are those used in Laboratory 2 with the substitution of

- $\text{GUL}\psi(\xi)$ for $\psi_{\xi 0}$, where ξ may be either A or B and ψ may be either x or y,
- $\text{G}\xi\text{LRx}(\xi)$, for $x_{\xi 1}$, where ξ may be either A or B,
- $\text{GLRy}(\xi)$, for $y_{\xi 1}$ where ξ may be either A or B.

Please note that *every* module must include *all* of the programs. You will not be able to mix programs from different modules. A user should not be able to tell which program was used to enter the rectangle's dimensions after the call to the S program is complete.