
 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

1 resp.slides

The Professional Responsibilities
of Software Engineers

David Lorge Parnas

Abstract
Registered Engineers are expected to be aware of their
responsibilities as professionals. Those who practice
Software Engineering often enter that profession without
either an engineering education or professional
registration. The primary responsibility is to make sure
that their products are “fit for use”.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

2 resp.slides

Personal Responsibility, Social Responsibility and
Professional Responsibility

Is there a difference?

Can they conflict?
• Personal Responsibilitiesare general obligations towards

other individuals; most are shared by all persons
 (e.g. honesty, concern for others).

• Social Responsibilitiesare responsibilities towards society
as a whole. We have a debt to repay because society has
supported us when we needed it. (e.g. environmental
activism, peace activism, national defence)

• Professional Responsibilitiesare additional responsibilities
shared by members of a particular profession
(e.g medicine, journalism, or engineering)
Usually a code of responsibilities exists.

Professional responsibilities include, but are not
limited to, contractual obligations to an employer.

These obligations mayappearat times to conflict with
Personal and Social responsibility.

The primary responsibility of an engineer is always to
the safety and well-being of the public.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

3 resp.slides

Computers are Everywhere

Almost all of today’s engineering products were
designed using computers.

An increasing number of engineering products
contain computers.

Almost all of today’s software is wrong!
There is growing concern about the quality of
software.

There is an intense effort to improve the process of
programming.

References
(1) Neumann, P.G. “Computer Related Risks” ISBN 0-

201-55895- X, 1995, ACM Press, Addison Wesley
(2) Wiener, L.R. “Digital Woes, Why We Should Not

Depend on Software”, 1993, ISBN 0-201-62609-8,
Addison Wesley

(3) Forrester, Tom, Morrison Perry, “Computer Ethics:
Cautionary Tales and Ethical Dilemmas in
Computing, The MIT Press.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

4 resp.slides

Why is Software of Growing Importance?

Computers are increasingly powerful yet
decreasing in cost because they can be mass
produced.

Massed produced means potentially good for
everything but not good for anything.

Software is needed to tailor general purpose tool
to specific use.

Few hardware design jobs, but many software
design jobs.

Hardware designed with discipline by engineers
and errors are relatively rare.

Software designed intuitively by all kinds of
people; errors the normal case.

Difficulty of software always underestimated.
Systematic methods are “not needed”.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

5 resp.slides

Personal Responsibility, Social Responsibility
and Professional Responsibility

An Illustration - SDI (Star W ars):
Service on the “Committee on Computing in Support
of Battle Management”.

Some questions that arose:
(1) Was it honest? (personal responsibility)

(2) Had I made aprofessional commitment?
Was our activity designing a system that would meet
the needs of the customer as required by professional
codes?
What should a professional do if the answers were
“yes” and “no”?

(3) Was this project good forsociety?
Should I explain my views to the public?

Some regarded a “Yes” to (3b) as unprofessional.
The conflict in (2) was resolved by a detailed
explanation.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

6 resp.slides

Why would I work on Nuclear Plants but not
Star Wars?

Above a question of professional responsibility.
Questions of “Peace” are issues of social responsibility.
Honest claims, personal responsibility.

A Comparison of Technical Problems

Problem Characteristics SDI NPGS
Must deal with unknown physical
properties, deliberate deception

YES NO

Network with unreliable channels YES NO

Cannot be tested under realistic
operating conditions

YES NO

No possibility of human
intervention during use

YES NO

Short real-time deadlines YES NO

Frequent addition of devices YES NO

System easily overloaded in use YES NO

Component failures, statistically
correlated

YES NO

Precise synchronisation needed YES NO

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

7 resp.slides

The Social Responsibility of
Scientists And Engineers

“In the land of the blind,
the one eyed man is king”.

In a world increasingly dependent on science and
technology, Scientists and Engineers are the one-eyed
people.

The majority of our decision-makers are blind.

Consider the following public issues:
• Can we reduce our energy expenditures without great disruption

in people's lives?

• How urgent is the need to reduce the level of greenhouse gasses?

• Should we build more nuclear power generating stations?

• Is it safe to allow nuclear power generating stations to be
controlled by computers?

• Can technology help us to reduce the amount of the paper that
we use? Should we do that?

• Is it safe to allow computers to control cars and trucks?

Decisions will be taken by non-specialists, but the
input will come from people like us. We must give
them complete and accurate information.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

8 resp.slides

The Social Responsibilities of
Scientists & Engineers

Science and technology are the “black magic” of our
age.

We use arcane rituals and obscure terminology.

The public thinks that science can solve any problem if
given enough funds.

Public officials share this attitude. They fall for
scientific fads.

Buzzwords and big promises, favoured over solid
scientific work.

The rewards often go to the illusionists.

The successful do not speak out. The others are
ignored (“sour grapes”).

Most of us “go along” to get funds.

Don’t wehavea responsibility to seethat society’s
funds are well used?
In your career you will often have to decide whether or
not to participate in a project and, if you decide not to
participate, whether you should make your decision
public.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

9 resp.slides

The Professional Responsibilities of Engineers

Unfortunately, Software Engineers are not always
Engineers.

“Software Engineering” is a shallow course on
programming, taught in a science department, not a
professional programme in Engineering

Many “software engineers” have no technical
education.

Manycould not be Professional Engineers.

Many confuse software engineering with configuration
management.

An Engineer is someone who uses advanced
knowledge of science, mathematics, and technology to
build objects for use by others.

Most programmers or software engineers, are
Engineers, underqualified, unlicensed, and often
unprofessional.

They are unaware of their professional responsibilities.

Programmersneed to learn about the professional
responsibility of engineers.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

10 resp.slides

Why do we havelicensed Professional Engineers?

An old system introduced because:
• Some products potentially dangerous. Incompetent

designs a danger to public.

• Purchasers and some employers are often unable to
judge the competence of designers.

• Competent, conscientious, disciplined professionals
want public to distinguish between themselves and
others. Bad work by a few damages the reputations
and business prospects of all.

• Financial pressures may tempt employers to “cut
corners”. We are protected better when professional
obligations go beyond loyalty or obedience to an
employer.Professionals do say “No”.

Don’t all of these reasons apply to software
construction?

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

11 resp.slides

What is the Professional Engineering system?

Professional Engineering Societies were established
by legislation to assure competence and awareness
of professional responsibilities.

Regulations require that certain products be
produced or approved by a recognised Professional
Engineer.

There is a separate committee to accredit programs.
Accreditation is a very serious process.

Graduates of accredited programs have an easier
path to recognition as a Professional Engineer.

An exam on responsibilities is required in any case.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

12 resp.slides

Why are “Software Engineers” different?

The result of a “software crisis” (optimism).

Originally dealt with as a scientific problem. The basis
of software engineering was not well understood.

First meetings attended by many mathematicians and
scientists, few engineers.

Many engineers were still blissfully unaware of the
importance of computers in their profession.

The word is “Engineering” used to indicate practical
concerns, not a profession.

Professional societies did not take it seriously.

Software Engineering has developedoutside of the
Engineering Community.

It has been left to Computer Science departments,
taught by people who are not Engineers.

Because badly designed computer programs are hard
to manage, emphasis has been on project management,
project scheduling, version control, etc.

Today, the engineering societies are beginning to do
what they were always required to do.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

13 resp.slides

What are the obligations of the engineer?

The following arethe responsibilityof any kind of
engineer:
(1) Accept individual responsibility.
• Following orders does not justify approving bad designs.

• One cannot always be a “team player”.

• Professional standards have priority over other pressures.

(2) Solve the real problem
• Look beyond the customer’s opinions.

• Have a precise description of a problem.

• Get that description reviewed before building.

(3) Be honest about capabilities
• Don’t offer technical solutions where there are none.

• Don’t do studies when you already know the answer.

(4) Produce reviewable designs
• No individual is infallible.

• Document to make reviewing easy.

(5) Maintainability
• Produce a product that can be maintained without you. - It’s not

your personal product.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

14 resp.slides

Professional Practice in Software Development

Some responses to a critical consultant:
• “Of course it’s wrong, but that is what my boss told me to do.”

• “We already know the answer, but they will pay us $1,000,000
for the study.

• “It’s not the right way, but it’s the customer’s suggestion.”

• “At XYZ corporation, we don’t tell our customers that they are
wrong, we take their contracts.”

• “That’s not the real problem, but they asked us to do it.”

• “We can’t give them what they need, but we’ll do the best we
can.”

• “We’ve got a deadline; we’ll worry about maintainability when
we get the maintenance contract.

• “We don’t like people criticising our designs!”

These remarks showed that the speakers were unaware
of the professional responsibilities of engineers.

Some had not heard of those responsibilities.

Some had no such excuse!

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

15 resp.slides

A Simple Example: Pacemakers

Their importance to the user is obvious!

They are also important to those nearby.

They are controlled by software.
• Many modes of operation

• Computer controlled telemetry system

• Data collection

• “Programmable” by remove control

• “When needed” intervention.

• Rate responds to body activity.

• Packaged in a small sealed unit

• Must survive in a “hostile environment”

Clearly the type of device that should be built by
engineers.

The program is critical and should be well
documented and reviewable.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

16 resp.slides

What Should be Done for Pacemaker Software?

(1) Programmer should have a precise description of the
environment and requirements

(2) Black box description should have been produced for
review.

(3) Document should have been reviewable and reviewed
by Cardiologists.

(4) The code should have been documented in a way that
permitted systematic review and revision.

(5) Code should have been subject to systematic inspection.

(6) Doctor should have been provide with well-organised
precise documentation that explained the behaviour of
the device to him.

All of these things would be expected of a
professional engineer.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

17 resp.slides

A Personal Anecdote

Pacemaker “refused” the surgeon’s command; neither
surgeon nor technician understood why.

I found the explanation in a footnote after several hours
of reading

It took 30 minutes to find it the second time.

Engineer responsible could explain the hardware aspects
in great detail.

He referred us to a programmer, who could not be found,
to explain the code.

Programming had been viewed as a trivial task;
Responsible engineer did not review it.

As a result of inadequate review, there are
fundamental weaknesses.
• Motion sensor does not measure physical activity

• Expected rate adjustment is inflexible.

The problem solved was not the real problem.

This was a typical software product.
The software was written as it would have been written
25 years ago.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

18 resp.slides

Software used by Professional Engineers

Professional Engineers take responsibility for
their products, but, ...
• to design those products they use software that

comes with a disclaimer instead of a warranty,

• Professional Engineers belong to a society that
enforces codes of professional behaviour,

• they must use tools produced by people who do
not belong to such a society.

This cannot be a stable situation!

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

19 resp.slides

The “Know How” isn’t There!

If we look at other areas of engineering, we know
what software engineers should do.

If we look at current practice, those things are not
done.

It’s not just a matter of lack of will.

It’s not just a matter of lack of awareness.

Most programmers do not know how to do the
things that they should do.

They do not know how to:
• document requirements in a way that can be reviewed

by subject matter experts,

• document code precisely and completely,

• inspect code systematically.

We are trying to give you that “know how”.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

20 resp.slides

APEO Software Guidelines

Engineers are responsible for verifying that results
obtained by using software are accurate and acceptable.

The engineer should ensure that professional engineering
verification of the software’s performance exists.

Software reliability requires a disciplined approach to
quality assurance.

Functional requirements that cannot be verified, or are
inadequately defined, ambiguous or infeasible will lead to
the development of an inadequate software product.

Engineers owe a duty of care to the client and the public.
That duty of care may be breached if engineers are
negligent in rendering services to the client, and they may
be liable for damages... That liability may arise if a
computer program developed by an engineer and used by
a client or third party is defective and causes harm...

Quality Characteristics
Functionality, Maintainability, Reliability, Reviewability,
Safety, Usability, Completeness, Modifiability,
Robustness

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

21 resp.slides

Improving Professionalism in
Software Development

Thr ee steps:
(1) Work with Professional Engineering societies.

(2) Develop better educational programmes.

(3) Develop accreditation procedures for Software
Engineering programmes.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

22 resp.slides

Why discuss the design process?

We can’t tell people how to think!
Nobody will follow the process we define!
but,
We all look for guidance in difficult situations

• Where do we start?

• What should we write?

• When are we done?

The process can affect the quality of the product.
Progress measurement requires a model of the
process.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

23 resp.slides

Why is software commonly the product
of an irrational process?

We start to build before we know what we want.

We learn what we want as we start to build.

Sometimes the basis of our work is a new
technology or implementation concept.

We make decisions without being able to justify
them relative to a statement of goals.

We simply do not understand enough to be rational
designers.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

24 resp.slides

Why do we want a rational process?

We want to derive programs from their requirements
to be sure that they meet those requirements.

We want to be systematic, so that we don’t overlook
anything.

We want to be able to give a rational explanation of
our work to help others understand.

We want our work to be more easily understood,
more safely modified.

We want to make good decisions, decisions that
won’t have to be reversed or revised.

We want to look good.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

25 resp.slides

Bad News:

Any proposed “rational process” will always be
an idealisation - We will never really do it.

Good News:

We can fake it!
It pays to fake it!

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

26 resp.slides

Why is any proposed rational process an
idealisation, a dream?

(1) Customers do not know what they want at the start of
the design process.

(2) Even if you knew what you wanted, there are
unknowns in the environment that become known
only during the development.

(3) The implications of some details only become clear
during development.

(4) One must then either backtrack or produce a less-
than-ideal design.

(5) At the start of the process, the details are
overwhelming.

(6) There are always changes in both intent and
environment.

(7) One can only avoid errors by avoiding humans.

(8) We often have strong preconceptions about how to
build something.

(9) Reuse of previous work is encouraged.

(10)Some projects are driven by the desire to exploit new
technology or machines.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

27 resp.slides

Why should we care about a process we cannot
follow?

Documentation that simulates the ideal can be
produced.

Understanding the ideal process guides the
designers.

Having the model helps us to approach it.

Large organisations benefit from a standard process:
• better reviews

• better progress measurement

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

28 resp.slides

A Rational Design Process

(1) A. Establish and document system requirements (black-
box view)

(2) Select Hardware Components and Document the
System Design

(3) Document the Desired Software Behaviour

(4) Design and document the module structure

(5) Design and document the module interfaces

(6) Design and document the uses hierarchy

(7) Establish process structure guidelines

(8) For each module that is too big to throw away, repeat
4...8, then
(8.1) Design the module internally

(8.2)Code to the internal design

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

29 resp.slides

Why do we need requirements documents?

How will it be used?

Decide what to build before starting to build it.

Provide an organised reference document for the
software engineers.

Provide a reference document for the Quality
Assurance Group.

Specify the constraints for future improvement
actions.

Provide input to those who write user manuals and
other less-formal documents.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

30 resp.slides

What goes in the system requirements document?

• Everything you need to know to design the
system, no more--no less.

• Every statement should be valid for all acceptable
product.

• If a product satisfies every statement, it should be
acceptable.

• Requirements are “life cycle” requirements.

• Requirements are not “ostrich-eye” requirements.

• Should be an engineering document, not an
introduction.

• Should provide descriptions, not stories.

• Areas of incompleteness should be specified.

• Only monitored and controlled environmental
variables should be mentioned

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

31 resp.slides

What goes in the system design document?

• The characteristics of the computer hardware
input and output registers.

• The functional characteristics of the peripheral
devices that sense the monitored variables and
control the control variables.

The relationship between the input/output variables
and the system environmental variables.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

32 resp.slides

What about the software requirements?

• Everything you need to know to write the
software, no more--no less.

• Every statement should be valid for all acceptable
product.

• If a product satisfies every statement, it should be
acceptable.

• Requirements are “total life cycle” requirements.

• Requirements are not “ostrich-eye” requirements.

• Should be an engineering document, not an
introduction.

• Should provide descriptions, not stories.

• Areas of incompleteness should be specified.

This information is provided by the two previously
described documents.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

33 resp.slides

Decomposing the product into modules

What is a module guide?

• A document describing the responsibilities of
individual modules.

Why do we need a module guide?

• To avoid duplication.

• To avoid gaps.

• To help an ignorant maintainer.

What criteria is used?

• Information Hiding - Separation of Concerns

• Things that can change separately are separated.

What does the module guide show?

• Secrets.

• Not Interfaces.

• Not Roles.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

34 resp.slides

Documenting individual module interfaces

Why do we need module interface documents?

• Allows independent development of modules.

• Reduces unintended links between modules.

• Reduces the amount of information one needs to
know.

How do we provide an abstract interface description?

• Focus entirely on externally visible programs.

• Make assertions about the effects of traces.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

35 resp.slides

The design of the “uses” relation

What is the “uses” relation?
• The decision about which programs a program

may use

What are the goals of the “uses design?
• Phased development

• Fall back during development and delivery

• Fail soft product

• Minimise need for scaffolding

• Provide for reduced capability (cheaper) products

How do you document the uses relation?
• Boolean matrix

• Picture

The “uses” relation should be hierarchical
It will be modified during development.

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

36 resp.slides

Designing the implementation
of individual modules

What should be in the module design document?
• Internal data structures (often created by

submittals) may be implemented using other
modules.

• Function/LD-relation of each access program.

• Abstraction Function: data→ abstract value.

What will the design document be used for?
• This document should be available to guide the

coders.

• This document is the basis for outside review.

• This document is a guide to future maintainers

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

37 resp.slides

Documentation:

 Necessary evil or designer's medium

Most software designers view documentation as a
necessary evil.

Those charged with maintenance agree that what
they get is evil (or at least misguided).

Rush to Code: Software just seems to happen.

“Pre-Implementation Phases”--they produce a lot
of blah blah blah.

Resolving the dilemma--Documentation that is
both maintenance document and design medium

• Used as a medium for abstract design

• Used for design reviews

• Used as a manual in the design phase

• Used to bring new staff up to speed

• Used by the maintainer

 McMaster University

January 3, 2002 16:37

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

38 resp.slides

The Rational Design Process

We will never follow it, but:

We can produce all the documents that we would
have produced if we had.

Those are the documents that we want.

The “myth” of the rational designer came about
because we wanted the reality of the rational design
documents.

We are not misleading students, unless we pretend
that we complete those documents in the order that
they are described.

