SE 2A04 Fall 2001

Some Fundamental
Programming Concepts

Instructor: W. M. Farmer

Revised: 12 September 2001

Other Ways of Viewing Programs

X o As a small abstract machine

— Good because the machine can be simple

e As a function that maps inputs to outputs

— Good if the program has no side-effects

e As an expression in a formal language

— The syntax of the expression is the program

— The semantics of the expression is the behavior of
the program

— Good if the language is well behaved

e As a constructive proof of an existential formula

— Very impractical with today’s technology

What is a Program?

e A program is most often viewed as a sequence of
instructions for a machine

— An understanding of a program requires an
understanding of the machine

¢ A machine language program is a sequence of
instructions for a physical machine
— Usually represented as a sequence of 0s and 1s
— Not intelligible to humans

e A high-level language program can be viewed as a
sequence of instructions for a high-level abstract machine
— Easier to understand because the machine is simpler

— Ultimately executed on a physical machine via
interpretation or compilation

Ways of Classifying Programs

Sequential vs. concurrent

e Terminating vs. nonterminating

Subject-invoked vs. event-triggered

Applicative vs. systemic

SE 2A04 focuses on programs that are sequential,
terminating, subject-invoked, and applicative




Programming Languages

e Programming languages are intended to facilitate
program implementation but not necessarily program
design

e There are many kinds of programming languages

— Imperative (Examples: Pascal, C, Basic, Fortran)
Object-oriented (Examples: Smalltalk, C4++, Java)
— Higher-order languages (Examples: Lisp, Scheme, ML)

— Functional (Examples: ML, Haskell)
Logical (Examples: Prolog)

e Oberon is an imperative language with some elements of
object-oriented and higher-order languages

e The design of a program should be tied to a specific
programming language as little as possible

Example: Oberon

e Primitive expressions:

— Characters, numbers, identifiers
— Basic types
— Basic operators and system-supplied procedures

e Means of combination:

— Expression formation

— Procedure call

— Assignment (:=)

— Composition (;)

— Conditional selection (IF, CASE)

— Iteration (FOR, WHILE, REPEAT, LOOP)

e Means of abstraction:

— Type declarations
— Variable and constant declarations
— Module and procedure declarations

Components of a Powerful Language
1. Primitive expressions

2. Means of combination

e Compound expressions are built from simpler ones
via constructors

e T he expressions denote combinations of objects

3. Means of abstraction

e Compound expressions are built from simpler ones
via constructors
e The expressions denote new objects

Taken from Abelson, Sussman, and Sussman, Structure and
Interpretation of Computer Programs (see references)

Example: Lambda Notation

e Lambda notation is used in many languages to express
ideas about functions

— Lambda Calculus (a model of computability)
— Simple Type Theory (a higher-order predicate logic)

e Primitive expressions: variable and constant symbols for
denoting primitive functions and individuals

e Means of combination: function application f(a)

e Means of abstraction: function abstraction (Az. s[z])

e Conversion rules

— Alpha: (Az. s[z]) = (Ay. s[y]) (with no variable captures)

— Beta: (Az. s[z])(t) = s[t] (with no variable captures)

8




Data Structures

e A data structure is a structured collection of values

— Values include booleans, characters, integers, and floating-

point numbers (atomic values)

— Values may also include some data structures (compound

values)

e Various operators are associated with each kind of data
structure:

— Constructors for creating data structures
— Selectors for retrieving the values in data structures
— Mutators for modifying the values in data structures

e Some data structures do not have mutators

Types

e A type is a syntactic object ¢ that denotes a set s of
values

— t and s are often confused with each other

e Types are used in a variety of ways:

To classify values (latent types)

To classify variables (manifest types)
To control the formation of expressions
To classify expressions by value

e Types are also used as “mini-specifications”

11

Data Structure Example: Pair

e Constructor: pair(a,b) creates a “pair” from two values
a and b

e Selectors:

— first(p) returns the first value of the pair p
— second(p) returns the second value of the pair p

e Mutators:

— set-first(p,x) sets the first value of the pair p to the
value x

— set-second(p,x) sets the second value of a pair p to
the value x

10

Type Examples

e Mathematical types:

— Z: denotes the set of integers
— R: denotes the set of real numbers

— Z — R: denotes the set of functions from the integers
to the real numbers

e Oberon types
— INTEGER: set of machine integers between -32768 and
32767

— REAL: set of floating point numbers between -3.4E+38
and 3.4E+38

— ARRAY OF CHAR: set of arrays holding characters, i.e.,
members of the Oberon type CHAR

12




Variables

e The meaning of “variable” is different in logic,
control theory, and programming

e In logic, a variable is a symbol that denotes an
unspecified value

e In control theory, a variable is a changing value that is
a component of the state of a system
— A monitored variable is a variable the system can
observe but not change

— A controlled variable is a variable the system can
both observe and change

e In programming, a variable is a data structure composed
of a single value and with the following attributes:
— Name: An identifier bound to the variable
— Value: The single value stored in the variable

— Type: The type of the values that can be stored
13

Binding vs. Assignment

e Binding associates an identifier with a value
— An identifier ¢ bound to a value v means that ¢ is a
name for v
— Several identifiers can be bound to the same value
— Binding does not modify data structures

e Assignment changes a value in a data structure

e An Oberon variable declaration binds an identifier to a
variable, while an Oberon assignment statement changes
the value of a variable

15

Oberon Variables

e A variable declaration such as
VAR sum: INTEGER;
serves as the constructor for a variable

— sum iS the name of the variable
— INTEGER is the type of the variable
— The value of the variable is initially empty

e The name of a variable (e.g., sum) serves as the selector
for a variable

e An assignment statement such as
sum := 17;

serves as the mutator for a variable

14

Constants

e The meaning of “constant” is different in logic,
control theory, and programming

e In logic, a constant is a symbol that denotes a
specified value

e In control theory, a constant is an unchanging value

e In programming, a constant is a variable without
mutators

— The use of constants is essential for code readability
and software maintenance

16




Oberon Constants

e A constant declaration such as
CONST pi = 3.14;
serves as the constructor for a constant

— pi is the name of the constant
— 3.14 is the value of the constant
— The type of the constant is the type of 3.14, i.e., REAL

e The name of a constant (e.g., pi) serves as the selector
for a constant

e The value of a constant cannot be changed (at run time):
there is no mutator for a constant

17

Persistence

e The persistence of a data structure (e.g., a variable) is
the period of time the data structure is available to a
running program

e Examples:

— The persistence of a running function procedure begins
when it is called and ends when it returns a value

— The persistence of a variable declared in a procedure
normally has the same persistence as the procedure

— The persistence of an Oberon module is normally from
when it is first imported to the termination of the
program

19

Scope

e The scope of an identifier ¢ bound to a value v is the
region of program code in which the binding is effective

— The scope is usually the region of code from the place

where ¢ was first bound to the end of the smallest
enclosing “block” of code

— An identifier i is only visible in its scope, i.e., outside
of its scope 7 will normally not be bound to v

e If 7 is rebound within its scope, a new scope of i is created
in which the old binding is not visible

e In Oberon, module and procedure declarations serve as
blocks

e In accordance with the Principle of Least Privilege, the
scope of a variable name should be as narrow as possible

18

Argument Passing Conventions

The most common conventions for passing arguments to
procedures are:

e Call-by-name: the argument is passed without being
evaluated

— Arguments to macros are usually passed this way

e Call-by-value: the value of the argument is passed

— If the argument is a name of a variable z, assignments
to its corresponding formal parameter have no effect
effect on z

e Call-by-reference when the argument is a name of a
variable z, the corresponding formal parameter of the
procedure is also bound to x

— Assignments to the formal parameter are effectively
assignments to z
20




