
 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

1 progcon.slides

Constructing Programs that we Understand

Most programs are poorly understood.

There are unexpected “bugs”.

We have to “try” them to find out what they will do.

They are always being “fixed” or “improved”.

The only solution to this problem requires

• precise description of component programs, and

• discipline in the way we construct new programs from
old ones.

Today’s Questions:
(1) If we have a set ofprimitive programs, how can we combine

them to construct bigger, more useful, programs?
(2) If we have a set ofpreviously constructed programs, how

can we combine them to construct bigger, more useful, programs?
(3) What does a program that “does nothing” really do?

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

2 progcon.slides

Two Programs that “Do Nothing”

Definition 1: A program that quits. We call this
programabort. It does nothing and nothing can ever
happen after it runs.

Definition 2: A program that changes nothing. We
call this programskip.

• The first does nothing because it never even allows the
program after it to run.

• The second does nothing because it terminates
without making any changes to the state.

This example illustrates the perils of using English
(or any other natural language) to describe programs.
English blurs the difference.

Our set of building blocks includes both of these
programs.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

3 progcon.slides

Programming: Constructing Programs

Intuitively, programming is “telling the computer
what to do”.

More professionally, programming is the
construction of bigger programs from smaller ones.

We almost never “instruct” the machine in detail.
Our job is to use previously written programs in new
ways. We “instruct” the computer to use those
programs. They are our building-blocks.

We must understand, the building-blocks, and the
constructors, in detail.

If we are given the mathematical description of our
building-blocks, we must be able to produce the
mathematical description of the programs that we
produce.

Our products will be someone else’s building-blocks.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

4 progcon.slides

Program Constructors and their Description

A constructor is a way of combining two more
programs to get a constructed or larger program.

We are going to learn 4 forms of program
construction:

• sequential composition

• conditional execution

• union (of conditional programs)

• iteration.

Any program constructed with only these tools is a
well-structured program. Well structured programs
are more easily understood.

We must assume that we have precise descriptions of
the component programs.

We must know how to find a precise description of
the constructed programs from the component
programs.

Only then will the programs that you construct be well
understood programs.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

5 progcon.slides

What Should W e kno w about ho w building
bloc ks and constructed pr ograms?

We should know the answers to the following
questions:

• Which states can we start the program in if we
want termination to be possible?

• Which states can we start the program in if we
want termination to be certain?
(safe states)

If we start a program in a state where termination is
possible, what final states are possible?

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

6 progcon.slides

The Constructor “;”

If A and B are programs, A;B is a program.

Intuitively, A;B means do A, then do B.

A leaves the machine in some state; B starts in that
state. The constructed program starts in the state that
a started in and ends in the state that b stops in.

A safe state for A;B must be a safe state for A and,
must always lead to safe states for B. Otherwise it
isn’t safe.

Note that this constructor works for any programs A
and B,not just primitive programs. A and B could be
thousands of lines long and very complex. This
simple definition remains valid.

This constructor is found in every programming
language, usually denoted by “;” or a new line
character.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

7 progcon.slides

Using “;”: Some Simple Examples

In the following assume we have only two (finite)
integer variables, x and y, available. x’ denotes the
value of the variable x after the program executes; ‘y
denotes the value of y before any execution.

(1) Problem: (x’= ‘x+1) ∧ (y’ = ‘y+1)
Solution: x ⇐ x+1; y ⇐ y+1
Solution: y ⇐ y+1; x ⇐ x+1

(2) Problem: (x’= ‘x+‘y) ∧ (y’ = ‘y+1)
Solution: x ⇐ x+y; y ⇐ y+1
Solution: y ⇐ y+1; x ⇐ x+y-1

(3) Problem: (x’= ‘x+y’) ∧ (y’ = ‘y+1)
Solution: x ⇐ x+y+1; y ⇐ y+1
Solution: y ⇐ y+1; x ⇐ x+y

(4) Problem: (x’= ‘x+‘y) ∧ (y’ = ‘x+1)
Solution: y⇐ x +1; ???
Solution: x⇐ x+y; y ⇐ x - y +1

Even in these simple examples, programming can be
tricky, mistakes can be made, and one must work
with discipline and care. Some simple problems
cannot be solved without imposing limits on the
values of x and y or by using an extra variable.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

8 progcon.slides

Swapping T wo Values

Consider the following problem:

(x’ = ‘y) ∧ (y’ = ‘x)

Remember that we haveonly 2 variables!

Can we do it? - Under certain conditions.

Solution: x ⇐ x + y; y ⇐ x - y; x ⇐ x - y

The condition: x must have enough states to store
x+y. If the initial values are too large, it fails.

What if we have a third variable, t?

Solution: t ⇐ x; x ⇐ y; y ⇐ t

Question: Does the specification allow t to change?

Answer: Yes, the specification places no restrictions
on what you do to t.

Note: Space-Generality trade-off. Without the extra
variable we cannot swap all possible values.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

9 progcon.slides

Using “;” With P owerful Pr ograms

Suppose that, instead of our normal arithmetic
operations we had operations on arrays.

For example, “A >20” is an expression whose

value is an array, same shape as A, with atrue

where A had an element with value greater than 20
and afalse in all other positions.

B⇐ A>20 assigns that value to B.

A/B, where A and B have the same shape and A is an
array whose elements consist oftrue andfalse is an
expression that “filters” B, its value is an array with
the corresponding elements of B in positions where
there is atrue in A and 0 elsewhere.

ΣA is an expression whose value is the sum of the
values of the elements in A.

Problem: Consider the effect of:

B⇐A>20; C⇐Β/Α; D ⇐ ΣC

What does this program do?

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

10 progcon.slides

A general notation for constructing programs

The important principles of program construction
apply to all practical languages.

In this class we will use a simple notation to describe
how our programs are constructed.

These program plans can be translated into any other
“imperative” programming language.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

11 progcon.slides

Partial Syntax f or Pr ograms

<program> ::= <simple program>
 |<composed program>

<simple program> ::=

<primitive program>
| (<program>)
| more to come

<composed program>::=
<simple program> ; <simple program>
|<composed program> ; <simple program>

<primitive program> will not be fully defined but
will include <expression>, <assignment>skip,
abort, andmore to come

The above is the first step towards defining a
complete notation for designing programs.

I call the notation (language) DAD. It features
simplicity, ease of analysis, and generality. We use it
as a tool for program planning.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

12 progcon.slides

Do we Need Other Program Constructors?

“;” is surprisingly powerful.

With a “rich” set of primitive programs, we can do a
great deal just by sequencing the invocations of those
programs.

The programming language APL is famous for it’s
“one-liners”. All they use is “;” to achieve
composition of the powerful built-in functions.

APL‘s primitive libraries werenot built using “;”
alone. We do need more.

• We need to limit the conditions under which a
program will be executed (conditionals).

• We need to provide for alternatives (branches).

• We need to provide for iteration (loops).

We will have to define these program constructors
precisely, telling how to find the function/relation of
the constructed program.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

13 progcon.slides

Guarding Pr ograms

We need to tell the computer under what conditions a
program may be executed.

We will do this by providing programs that say “yay”
or “nay”, i.e. true or false, to the execution of a
program. The information will be left in the
unnamed variable #, the place where expression
values are deposited.

These programs are normal boolean expressions.
They evaluate totrue or false. We use them as
guards.Guardsshould not change the state of any
other variables.

Definition: If “g” is a guard, and “P” is a program
then, “g → P” is aguarded program.

Note: a guarded program isnot a program.

Meaning: The program, P, should be executed only
if the guard, g, evaluates to true.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

14 progcon.slides

Describing Guar ded Pr ograms

For any guarded program we want to know:

• What will the guarded program do if executed?

• When is termination of the guarded program
guaranteed?

In what states would the guard saytrue, but
termination isnot guaranteed?

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

15 progcon.slides

What does a guar ded pr ogram mean?

• The guarded program terminates only if the guard
is true.

• In those cases it behaves exactly as g;P would.

• There may be states where the guard itself might
not terminate, or states where the guard yields
true but terminates in a state where P is not guar-
anteed to terminate.

• These states are “traps”; the computer can get
trapped by using g to see if P can be executed and
believing what g reports.

A guarded program should not be used in states that
are traps for it.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

16 progcon.slides

Combining Guar ded Pr ograms using “|”

It is useful to combine guarded programs than to
combine unguarded ones. The guards can be used to
tell the computer when to consider each of the
guarded programs.

If A, B, are guarded programs then,

(A| B| ...) is a program.

Intuitively:

• One of the programs whose guard is true will be
selected and executed.

• If no guard is true, the program will abort.

• If two or more guards are true, we are introducing
nondeterministic behaviour.

• The guards should be such that there are no
“trap” states.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

17 progcon.slides

Syntax f or Pr ograms

<program> ::= <simple program>
 | <composed program>

<simple program> ::=

<primitive program>

| (<program>)

| (<guarded program list>)

| more to come

<guard> ::= <boolean expression>
<guarded program> ::=

<guard> → <simple program>
<guarded program list> ::=
<guarded program> | <guarded program list> ‘|’
<guarded program>

<composed program>::=

<simple program> ; <simple program>

|<composed program> ; <simple program>

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

18 progcon.slides

Examples using guarded programs.

Problem:
Y’=MAXIMUM(‘X1,‘X2) ∧NC(X1,X2)

Solution: (X1≤ X2 → Y⇐ X2
| X2 ≤ X1→ Y⇐X1
)

Problem: y’ = SQRT(|‘x|)

Solution: (x<0→ y⇐SQRT(-x)
|x>0→ y⇐ SQRT(x)
| x=0→ y⇐0
)

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

19 progcon.slides

What does the f ollo wing pr ogram do?

(X > 7→X ⇐X+1

| X <7→ X ⇐X-1

| X=7 →X ⇐100

)

Vector Function Table
‘X > 7 ‘X= 7 ‘X< 7

H1
X’ = ‘X + 1 100 ‘X- 1

H2 G

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

20 progcon.slides

A Non-deterministic Program

Problem:

Solution:

(X > 6 →X ⇐X+1

| X < 8 → X ⇐X-1

| X = 7 → X ⇐100

)

Vector Relation Table

‘X > 7 ‘X = 7 ‘X < 7

H1
X’ | X’ = ‘X + 1 (X’ = 8) ∨ (X’ =

6) ∨ (X’ = 100)
X’ = ‘X-1

H2 G

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

21 progcon.slides

“Divide and Conquer” Programming

The guarded program is there to make sure that a
program will only be executed when the guard says
true. Every programming language has a similar
feature, called conditional statement.

Using the guarded program list we can provide a list
of alternatives. The constructed program will do
what would have been done by one of its programs
with a guard that says true.

To check a guarded program list:

• Make sure that all the states will have at least one
guard true.

• Check the guarded programs one at a time to see
if they will do the right thing when the guard is
true. You never need to look at two guarded pro-
grams at once.

This is the part of the “divide and conquer” approach
to program construction/analysis. “Divide and
Conquer” is theonly way to master complexity in
programs. Never try to understand (or write) a whole
program at once.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

22 progcon.slides

Why do we Need Iteration?

Without iteration the number of state changes that
can happen is limited by the length of a program.

• Everything is done only once.

• To do a lot, we must write a lot.

“Iteration” is a fancy word for repetition.

Each time that we execute a program that is being
iterated, part of that program must determine
whether the iterated program should be executed
again or not.

In some languages, the decision about repetition
seemsto be made outside the iterated program, but
this is misleading. The check for continuing is made
every time the program is executed and so is part of
what is being repeated.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

23 progcon.slides

Syntax of Iteration in the Planning Language

If P is a program,
it P ti

is a program.
Execution of P will either be followed by another
execution of P or stop in accordance with decisions
madewithin P.

To determine whether to continue or stop we
introduce two new primitive programs. These are
used to indicate whether or not the iteration should
continue.
☛, pronounced “go”
●, pronounced “stop”
If ☛ is executed, during P, P will be repeated.
If ● is executed, iteration will stop.
If both are executed, thelatest execution determines
the effect.

Examples:

● ; ● ; ☛ is equivalent to☛

☛ ; ☛ ; ● is equivalent to●

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

24 progcon.slides

The body, P, ofit P ti

P can be any program provided that it executes

either● or ☛ at least once in its first execution.

If P never executes●, iteration never terminates.

Non-terminating programs are useful in real-time
systems but those are beyond the scope of this
course.

In this course we are primarily interested in
terminating programs.

One more useful Primitive program.

init , which is “$ =start”, a boolean expression sets #
to true if $ = start

init allows a program to do something special on the
first execution of its body.

init is only useful in the body of a loop.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

25 progcon.slides

The Meaning of it P ti

Wrapping a program P in iteration brackets means
that

• P will be executed at least once.

• During each execution of P either☛ or ● must
be executed.

• When the execution of P is complete, the itera-
tion will either continue or stop depending on
whether☛ or ● was the last of those programs
to be executed.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

26 progcon.slides

Other Iteration Constructs

In the following, B represents a boolean expression, P an
arbitrary program, A, S, and C arithmetic expressions, and I is
an integer variable.

• while B do P
it (B → (P;☛) | ¬ B → ●) ti

• repeat Puntil B
it P; (B→ ● | ¬ B → ☛) ti

• repeat Pwhile B
it P; (B→ ☛ | ¬ B → ●) ti

• for I ⇐ A step Suntil C do P

I ⇐ A;

it (I ≤ C→ (P; I⇐I+S;☛) | Ι > C → ●) ti

Using itti we can accomplish the iteration statements
of other languages. First we design the loop, then we
pick the best construct.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

27 progcon.slides

Examples

Problem: x’ = min(‘x,20)

Solution:
it (x>20→ (x⇐ x-1; ☛) | ¬ (x>20)→ ●) ti

Solution:
(x>20→ x⇐ 20 | ¬ (x>20)→ skip)

Problem:
(‘y≥0) ∧ (‘x=x’) ∧ (y’=0) ∧ (z’= ‘x × ‘y)

Solution: z⇐ 0;
 it (¬ (y=0) → (z ⇐ z+x; y ⇐ y-1;☛)
| (y=0)→ ●)
ti

This program doesn’t stop for negative ‘y!

Problem:
((‘y>0) ∧ (‘x = x’) ∧ (y’ = 0) ∧ (z’ = ‘x × ‘y)) ∨ ((¬
(‘y>0)) ∧ (‘x = x’) ∧ (‘y= y’) ∧ (z’ =0))

Solution: z⇐0;
it ((y>0) → (z⇐ z+x;y⇐ y-1;☛)
| ¬(y>0) → ●)

• ti

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

28 progcon.slides

Final Syntax for Program Planning

<program>::=<simple program> |
<composed program>
| <guarded program list>

<simple program> ::=
<primitive program> | (<program>)
| it <program> ti

<guard> ::= <boolean expression>
<guarded program> ::=

<guard>→ <simple program>
<guarded program list> ::=

<guarded program> |
<guarded program list> ‘|’
 <guarded program>

<composed program>::=
<simple program> ; <simple program>
|<composed program> ; <simple program>

<primitive program> will include <expression>,
<assignment>,●, ☛, skip, abort, andinit .

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

29 progcon.slides

This is the whole syntax,

With it you can plan any program.

You can only produce well-structured programs.

It is easy to analyse.

It is easy to translate into other languages.

It makes excellent documentation.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

30 progcon.slides

The important properties of DAD

(1) Allows any known “fixed” algorithms.
(2) Symmetry supported in programs.
(3) Full Nesting of programs. (Box structure)
(4) Any program can be a statement in a bigger program.
(5) Complete semantics.
(6) Rules fit on one page.

Naming Programs

To ease readability we often give programs names.

Placing the name of a program, in a larger program
has the same semantics as copying the text of the
named program into that program.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

31 progcon.slides

Checking Termination

Problem: x’ = min(‘x,20)
Solution:
it (x>20→ (x⇐ x-1; ☛) | ¬ (x>20)→ ●) ti

Solution:
it x>20;(#→ (x⇐ x-1; ☛) | ¬ (#) → ●) ti

How can we be sure that a program will always
terminate?

(1) Find a quantity thatalways decreases whenever the
body executes☛.

(2) Show thatwhenever that quantity isnot positive, the body
will execute●.

How can we be sure that the programsabove will
always terminate?
(1) The value of x - 20 decreases whenever☛ is executed
(2) Whenever x - 20 is not positive,● will be executed.

Note that many useful programs do not always
terminate. Wealwaysneed to know whether or not a
program will terminate.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

32 progcon.slides

Euclid’s algorithm for Greatest Common
Divisor (GCD)

Problem:
(‘x > 0) ∧ (‘y > 0) ∧ (x’ = y’ = GCD(‘x,‘y))

Some mathematical facts:

•GCD is only defined for positive arguments.
•If x> y and x and y are not negative,

GCD(x-y,y) = GCD(x,y).
•for positive x, GCD(x,x) = x

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

33 progcon.slides

Euclid’s algorithm for Greatest Common
Divisor (GCD)

Solution:

((x > 0)∧ (y > 0)→
it
 (x>y→ (x⇐x-y; ☛)
 | y>x→ (y ⇐ y-x; ☛)
 | x=y→ ●)
ti)

Notethat theouterguardpreventsterminationof the
program when ‘x = ‘y = 0.

The iteration will terminate if
((‘x>0)∧(‘y>0))∨(‘x=‘y).

(1) The value ofmax(x,y) - gcd(x,y)decreases, and x and
y remain positive, whenever☛ is executed with both
x and y positive. When x=y this quantity is zero.

(2) The program will execute● if and only if x=y.

• If both x and y are initially positive, or both are initial-
ly 0, the iteration will stop.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

34 progcon.slides

The Advantages of Thinking in Terms of
Monotonically Decreasing Quantities.

The conventional way of thinking about termination
is to try to think about all the possible things that
might happen.

There are usually many possible execution
sequences.

Often we overlook some of them.

Looking at this decreasing quantity allows us to
avoid trying to find all the sequences.

It is simple and certain.

If the loop terminates, there must always be a
quantity that decreases with each execution of the
body.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

35 progcon.slides

PROBLEM: Searching array A with indices 1 ... n

(∃ i, A[i] = ‘x) ¬(∃i, A[i] = ‘x)

H1

j’ | A[j’] = ‘x true
present’= true false

H2 G
 ∧ ΝC(x,Α)

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

36 progcon.slides

PROBLEM: Searching array A with indices 1 ... n

SOLUTION:

j ⇐ 1; present⇐ false;
it (A[j]=x → (present⇐true;●)

 | ¬(A[j]=x) → (j<n→(j⇐ j+1;☛) | j ≥ n→ ●))

ti

SOLUTION:

j⇐ n; present⇐ false;
it (

 (A[j] = x → (present⇐ true; ●) |

¬(A[j] = x) →(j >1;

 (#→ (j⇐ j -1; ☛) | ¬(#)→ ●))))

ti

Exercises
(3) Explain the differences between these programs.
(4) Do they always get the same answer?
(5) What is the monotonically decreasing quantity for each?

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

37 progcon.slides

Finding the maximum in part of an array, A,
of N elements

Problem: partmax

(∀ i, j ≤ i ≤ N ⇒ A[i] ≤ max’) ∧
(∃k j ≤k’≤ N ∧ A[k’]= max’ ∧ ΝC(Α,j))

Solution:

max⇐ A[j]; i ⇐ j; k ⇐ j;

it

(i < N → (☛; i ⇐ i + 1;

 (max < A[i] →(max⇐ A[i]; k ⇐i)

| max ≥A[i] → skip)

)

| i ≥ N → ●)
ti

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

38 progcon.slides

Silly Sort

Problem: permutation(‘A, A’) ∧
(∀ i, (1 ≤ i < N) ⇒ (A[i+1]’ ≤ Α[i]’))

Solution:
j ⇐ 1;
it
(j < N → (partmax; A[k]⇐ A[j]; A[j] ⇐ max;

j ⇐ j+ 1;☛)
| j ≥ N → ●)

ti

Reminder: partmax
(∀ i, j ≤ i ≤ N ⇒ ‘A[i] ≤ max’) ∧

j ≤k’≤ N ∧ A[k’]= max’ ∧ ΝC(Α,j)

Note how this program was constructed using a
previously built program.

Note that we did not have to look at partmax, but we
must look at it’s description.

There aremuch better ways to sort!

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

39 progcon.slides

Summary

Programs should be constructed using previously
defined programs, not written from start to end.

One can avoid big programs by building programs
from previously available, precisely described, parts.

It is essential to have a precise description of those
parts.

These programs can be systematically checked.

• Are all cases covered by a guarded program list?

• Is each part correct for the cases that it covers?

• Under what initial conditions will the iterations
terminate?

It is hard enough to get these little programs correct.
Tiny changes have a big effect. We must stress
writing well-structured small programs.

These principles apply, and can be applied, no matter
what programming language is used.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

40 progcon.slides

How cananyoneunderstand a large program?

The most complex program that we have seen up to
now has included only one loop and a few guarded
program lists.

These “simple” programs are not simple. A great
many details must be correct for them to work.

Small lapses of attention are “fatal”. Small changes
can have a very big effect.

There is no such thing as “almost right”.

Textbook programs can be much larger. Some may
be about 100 or more lines.

They are still small programs.

Industrial programs of 10,000 lines are small.

Typical programs are hundreds of thousands.

Many systems involve millions of lines.

How can such programs be right?

How dare we rely on them?

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

41 progcon.slides

“Loop Invariants”

A loop invariant is a predicate that:

• will be true whenever execution of the loop begins,

• will be maintained (kepttrue) by each execution of
the body.

If you learn to think in terms of loop invariants you
won’t have to think in terms of lengthy sequences of
cases.

There is a loop invariant for every loop and in every
practical programming language. In the next pages
you will see many examples.

Loop invariants are another tool to help us avoid
having to try to find all possible sequences.

Instead of asking what changes during the loop, we
will ask what stays the same.

It makes the thinking easier.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

42 progcon.slides

Finding maximum and minimum elements in
an array.

PROBLEM: maxmin (Array X with indices 1 ... n)

Assume functions MAXIMUM, MINIMUM defined on arrays and
subarrays.

 (1≤ l ≤ u ≤n) ¬(1≤ l ≤ u ≤n)

H1

i’ | X[i’]=MINIMUM(X[l:u]) true

j’ | X[j’]=MAXIMUM(X[l:u]) true

H2 G

∧ ΝC (X, n, l, u)

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

43 progcon.slides

Finding maximum and minimum elements
in an array.

maxmin≡
i⇐l; j⇐i;
(integer w; w⇐l;
it
(w<u → (☛;w⇐w+1;

 (X[w] < X[i] → i⇐w
 | X[w] > X[j] → j⇐w

 | X[i] ≤X[w] ∧ X[w] ≤X[j] → skip))
 | w≥u → ●)

ti)

invariant:

X[i]=MINIMUM(X[l:w]) ∧
 X[j]=MAXIMUM(X[l:w])

w is a local variable.

monotonically decreasing quantity:u-w

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

44 progcon.slides

Sorting an Array X [1 ... N], N> 1

Problem: permutation(‘X,X’)∧
(∀ i, 0 < i < N⇒ X’[i] ≤X’[i+1])

Solution:
i⇐ 1;
it
(i < N →(X[i] > X[i+1] →

 (swap(X[i],X[i+1]); ☛;i⇐ 1)
 |X[i] ≤ X[i+1] → (i⇐ i+1; ☛))

| i ≥ N → ●)
ti

invariant:(∀ j, (0 < j < i) ⇒ X[j] ≤X[j+1])

monotonically decreasing quantity:

(number of out of order pairs, N-i).

Notes:
 ((a,b)<(c,d))≡ ((a < c)∨ ((a=c)∧ (b<d)))
Specificationof swap(a,b)≡
 ((a’ =‘b) ∧ (b’ = ‘a)) ∧ NC(all other variables)
Note that aliasing will limit our ability to implement
this.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

45 progcon.slides

Summary

Building well-structured programs is the only way to
reduce the number of bugs. Reducing the number of
bugs is essential for reliabilty, safety, and sales.

Thinking in terms of invariants is the best way to
design loops.

Finding the MDQ is the best way to be sure of
termination.

We have to avoid trying to trace all the possible
sequences.

We have to avoid long programs by using previously
constructed programs.

Three principles:
• Divide and Conquer

• Monotonically decreasing quantities

• Loop invariants that “grow” to program specifications.

Be a program designer, not a language lawyer.

Design rules last. Programming languages change or
become out-of-date.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

46 progcon.slides

Generalised Pattern Matching

Given two strings, one calledpat, one calleddat,
find the occurrences of pat in dat.

This problem arises in many applications.

The programs run on long data files and should be as
fast as possible.

Such programs should also be correct; some
commercial offerings are unreliable.

Early solutions weread hoc and complex.

Thorough research has led to far better algorithms.

This program isnot easy; it is a famous algorithm.
Many find it quite complex, but we can see view it as
a set of simple programs.

Any well-structured program can be viewed as a set
of simple programs.

That is theonly way we can understand complex
programs.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

47 progcon.slides

Looking for a match at position k?

integer array pat[0:p];
integer array dat[0:D]; boolean m;
Problem:
(m’ = (∀ i, (0≤i≤p) ⇒ pat[i]=dat[k+i])) ∧
NC(pat,dat, p, D, k)
Solution:
(k≤ D-p;
(# → (integer i; i⇐ 0;

it (pat[i]=dat[k+i];
 (#→ (i<p;
 (#→(i⇐ i+1;☛)|¬#→(m⇐ true;●)))
 |¬# → (m ⇐ false; ●)))

ti)
| ¬# → m ⇐ false))
loop invariant:
(∀j, (0 ≤ j < i) ⇒ pat[j]=dat[k+j]) ∧
 ((i=p)⇒ pat[p]=dat[k+p])

Note: To make the program a little more efficient, we had
to make the invariant more complex.
decreasing quantity: p - i

Note that iteration may stop before (p-i) =0.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

48 progcon.slides

Is there a matc h at some position k, k ≥ 0?

Let’s not throw away the failure information. We
make i global so that we can use its value.
Problem: k ≥ 0 ⇒
((m’ = (∀ i, 0 ≤ i ≤ p ⇒ pat[i]=dat[k+i])) ∧
 (k≤ D-p ⇒
i’=minel1({i| (0≤i≤p)∧pat[i]≠dat[k+i]}∪{p+1}))
∧ NC(pat,dat, p, D, k))

Solution:
matchk≡(k ≤ D-p;
(# → (i ⇐ 0;

it (pat[i]=dat[k+i];
 (#→(i⇐ i+1; i ≤ p;
 (#→ ☛ |¬# →(m ⇐ true;●)))
 |¬# → (m ⇐ false; ●)))

ti)
|¬# → m ⇐ false))
if k≤ D-p, i’ will indicate the first position in the
pattern where the match failed. If i’ >p, the match
has succeeded. This will be useful later.

1 Note: minel (x), where x is a non-empty set of
integers, is the smallest value in x.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

49 progcon.slides

Is there a matc h at position k, k ≥ 0 ?

Solution:

matchk≡ (k≤ D-p;
(# → (i ⇐ 0;

it (pat[i]=dat[k+i];
 (#→(i⇐ i+1; i ≤ p;
 (#→ ☛ |¬# →(m ⇐ true;●)))
 |¬# → (m ⇐ false; ●)))

ti)
|¬# → m ⇐ false))

loop invariant:

(∀j, (0 ≤ j < i) ⇒ pat[j]=dat[k+j])

The invariant has been simplified because i is
allowed to increment after a match has been found.

decreasing quantity: p+1- i

Note that iterationmaystop before (p+1-i) =0, but it
will stop when the quantity gets to 0.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

50 progcon.slides

Finding the location of the next match

Problem: NC(pat, dat, p, D)∧

Solution:
nextk≡
(it
(k<D-p → (k⇐ k + 1; matchk;

 (m → ● | ¬ m → ☛))
 | k ≥ D-p → (m ⇐ false; ●))
ti)
This program will be discussed further on the following
slides.

(∃ l, (l > ‘k) ∧
(∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[l+i]))

¬ (∃ l, (l > ‘k) ∧
(∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[l+i]))

H1

k’ | k’ =minel({ l |
(∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[l+i]) ∧
(l >‘k)})

true

m’= true false

i’ | i’ = p+1 true
H2 G

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

51 progcon.slides

Finding the location of the next match
Is this the best we can do?

If there is no match at position k, should we simply
increment k by 1 or can we go further?

• Consider the pattern “dave”. If the match failed on
the “e”, we could increment k by 3 without missing
a possible match.

• Consider the pattern “ddde”. If the match failed on
the “e”, we must increment by 1.

This pattern match is the inner loop of many long
programs. Both pattern and data can be long. We
should try to make this program as efficient as
possible.

In the examples above, the amount of the increment
depends on the pattern alone, not the data. It is a
constant for most searches.

Time invested in computing properties of the pattern
will be repaid later if the program is used to search
large arrays.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

52 progcon.slides

Computing d(f)

d(f) ≡ the increment to the first possible match.
f is number of matches before failure.
f = 0 means thefirst character didn’t match.
f = p+1 means asuccessful match.
If the pattern doesn’t repeat, d(f)≥ f.
If the pattern does repeat, we must consider a
possible match where the repetition begins.
For example, consider the pattern “abcabd”.
This pattern begins to repeat at position 3.
For f = 0, 1, or 2, the repetition is irrelevant.
d(0) = d(1) = 1. d(2) = 2.
For f = 3 (no second a), we should begin to compare
where the match failed, (increment by 3) but,
because there is no “a”, we can skip one more. d(3) =
4
If we found the second a, but not b, move 4.
If we fail at the end, we start at the repetition.
If we succeed, we move 6 over.
d(4) = 4, d(5) = 3, d(6) = 6

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

53 progcon.slides

Computing d(f)

For a patternabcabc we have:

d(0:6) = 1 1 2 4 4 5 3

d(5) is different from the previous example because
the pattern is a complete repetition. If we failed to
find the final c, we won’t find it when we shift over
by 3 positions either.

The success value (d(6)) is different because the
pattern is a complete repetition and might be found
again beginning where we found the second a.

Repetitions “don’t count” if the value we were
looking for when the match failed is the same as the
value we would be looking for after advancing to the
next possible match.

If the match succeeded, the repetition must always
count.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

54 progcon.slides

Computing d[f]: finding repetitions

We do not want to recompute d(f) so we will
compute it and store it in an array d[0:p+1]. First, we
need to find relevant repetitions.

Problem: 0 < f≤ p+1⇒
r’=(∀j,0≤j<f-m⇒pat[j]=pat[j+m]) ∧NC(f,m)

Solution: repatm ≡
 (integer j; j ⇐ 0; r ⇐ true;
it
(j < f-m → (pat[j]=pat[j+m];
 (# → (j ⇐ j+1;☛)

 |¬#→ (r ⇐ false; ●)))
| j ≥ f-m → ●)
ti)

invariant:

r=(∀i, (0 ≤ i < j) ⇒pat[i]=pat[i+m])

decreasing quantity: f - m - j

Note that this will terminate immediately if f=m.
Effectively, there is a zero-length repetition at f.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

55 progcon.slides

Computing d(f), for a value of f greater than 0

Problem: f >0⇒ (
 NC(f) ∧ d’[f]=
minel({m|(m>0)∧(∀j,0 ≤ j < f-m ⇒
 pat[j]=pat[j+m]) ∧ (¬(pat[f-m]=pat[f]))}))

Solution: setdf≡
(integer m; m⇐ 1;
it
(m ≤ f → (repatm;

(r →
(f≤p→(pat[f-m]=pat[f]→(m⇐m+1;☛)

|pat[f-m]≠pat[f]→ ●)
|f>p→ ●)

 |¬r→ (m ⇐ m +1;☛)))
| m > f→ ●)
ti ;

d[f] ⇐ m)

This program is discussed on the next slide.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

56 progcon.slides

Computing d(f), f or f other than 0

Solution: setdf≡
(integer m; m⇐ 1;
it
(m ≤ f → (repatm;

(r →
(f≤p→(pat[f-m]=pat[f]→(m⇐m+1;☛)

|pat[f-m]≠pat[f]→ ●)
|f>p→ ●)

 |¬r→ (m ⇐ m +1;☛)))
| m > f→ ●)
ti;
d[f] ⇐ m)

invariant: m≤ minel(
{q | (q>0) ∧ (∀j,0 ≤ j < f-q ⇒
 pat[j]=pat[j+q]) ∧ (¬(pat[f-q]= pat[f]))})

decreasing quantity: (f-m+1)

repatm satisfies:
0 < f≤ p+1⇒
r’=(∀j,0≤j<f-m⇒pat[j]=pat[j+m])})∧NC(f,m)

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

57 progcon.slides

Computing d[f], f or 0 < f ≤ p+1

Problem: (∀ f, 0≤f ≤ p+1⇒
d’[f]= minel(
{m|(m>0)∧(∀j,0≤j<f-m ⇒
 pat[j]=pat[j+m]) ∧ (¬(pat[f-m]=pat[f]))}))

Solution: (d[0]⇐ 1;
f ⇐ 1;
it
(f ≤ p+1 → (setdf; f⇐ f +1; ☛)
| f > p+1→ ●)
ti)

loop invariant:(∀ q, 0 ≤q < f ⇒
d[q]= minel({m|(m>0)∧(∀j,0≤j<q-m ⇒
 pat[j]=pat[j+m]) ∧(¬(pat[q-m]=pat[q]))}))

decreasing quantity: (p+2 -f)

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

58 progcon.slides

Back to Pattern Matching, using d[f]

Problem: NC(pat,dat,p,d)∧(((∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[‘k+i])∧‘i=p+1∧(∀f,0≤f≤p+1⇒d[f]=d(f)))⇒

(∃ l, (l > ‘k) ∧
(∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[l+i]))

¬ (∃ l, (l > ‘k) ∧
(∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[l+i]))

H1

k’ | k’ =minel({ l |
(∀ i, 0 ≤ i ≤ p ⇒
pat[i]=dat[l+i]) ∧
(l >‘k)})

true

m’= true false

i’ | i’ = p+1 true
H2 G

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

59 progcon.slides

Solution: nextk ≡

(it
(k<D-p → (k⇐ k+d[i]; matchk;

 (m→ ● | ¬ m → ☛))

| k ≥ D-p→ (m ⇐ false; ●))

ti)
matchk satisfies: k ≥ 0 ⇒
((m’ = (∀ i, 0 ≤ i ≤ p ⇒ pat[i]=dat[k+i])) ∧
(k≤D-p ⇒
i’=minel({i| (0≤i≤p)∧pat[i]≠dat[k+i]}∪{p+1})
∧ NC(pat,dat, p, D, k))

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

60 progcon.slides

Can matchk be improved?

Problem:

‘ i=minel({j |(0≤j≤p+1) ∧
¬(pat[j]=dat[k-d[‘i]+j])}) ⇒
(m’ = (∀ j, 0 ≤ j ≤ p ⇒ pat[j]=dat[k+j])) ∧
(∀ f, 0≤f≤p+1⇒d[f]=d(f))∧ (k≤ D-p ⇒
i’=minel({j | (0 ≤ j ≤ p+1)
 ∧¬(pat[j]=dat[k+j])}) ∧ NC(pat,dat, p, D, k)

Solution:
matchk≡(k ≤ D-p;
(# → (i ⇐ max(0,i-d[i]); m⇐ true;

it (pat[i]=dat[k+i];
 (#→(i⇐ i+1; i ≤ p; (#→ ☛|¬# →●))
 |¬# → (m ⇐ false; ●)))

ti)
|¬# → m ⇐ false))
loop invariant:
 (m = (∀ j, 0 ≤ j < i ⇒ pat[j]=dat[k+j])) ∧
 (¬m ⇒ pat[i] ≠ dat[k+i])
decreasing quantity: p+1- i
Note that iteration may stop before (p+1-i)=0.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

61 progcon.slides

Building Blocks for Pattern Matching

Rather than try to write the algorithm in a single step,
we built these components:
• A simple program to see if a match was present at a previously

specified position.

• matchk, an improved version that reported where a match first
failed.

• nextk, a program that, if run after one match has been found in the
data, finds the next place where there is a match and reports where
it begins.

• repatm, a program that looks for repetitions in the pattern, not in
the data. The repetitions must begin at m and end where the match
as failed.

• setdf, a program that computes d(f) the maximum safe
displacement if f marks the place where a match failed (f > 0).

• A program that computed the displacement, d(f) for all possible f
and stored their values in an array d[f].

• An improved version nextk, that uses d[f].

• An improved version of matchk that does not look at places where
we already know there was a match.

The final versions of nextk and matchk can be the
building blocks for programs to search long files.

 McMaster University

11/23/99

Department of COMPUTING AND SOFTWARE
Software Engineering Programme

“connecting theory with practice”

62 progcon.slides

Lessons to be Learned

• These are useful algorithms for many applications, the algorithms
are useful in themselves.

• This is not an algorithm that the average engineer or programmer
would think of.

• Engineers that make frequent use of programs, or who write
frequently used programs should know the literature on
algorithms.

• The conditions under which an algorithm will work must be
carefully specified.

• This algorithm, written out in full, would be incomprehensible for
most of us.

• We have presented (developed) it in small steps and there is no
real need to look at it all together.

• The reason we don’t have to look at it all at once is because we
have precise descriptions of the parts.

• Even with this method, programming is, and always will be a very
error prone process.

• Testing is essential.

• When efficiency is important, computations should be moved out
of inner loops wherever possible.

• Small improvements in an algorithm often make an invariant more
complex.

Structure can always be maintained!

