= McMaster University =

Constructing Programs that we Understand

Most programs are poorly understood.
There are unexpected “bugs”.

We have to “try” them to find out what they will do.
They are always being “fixed” or “improved”.
The only solution to this problem requires

e precise description of component programs, and

« discipline in the way we construct new programs from
old ones.

Todays Questions:
(1) If we have a set g@drimitive programs, how can we combine
them to construct bigger, more useful, programs?

(2) If we have a set g@dreviously constructeglograms, ho
can we combine them to construct bigger, more useful, programs?

(3) What does a program that “does nothing” really do?

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

1 progcon.slides 11/23/99

= McMaster University =

Programming: Constructing Programs

Intuitively, programming is “telling the computer
what to do”.

More professionally, programming is the
construction of bigger programs from smaller ones.

We almost never “instruct” the machine in detail.
Our job is to use previously written programs in new
ways. We “instruct” the computer to use those
programs. They are our building-blocks.

We must understand, the building-blocks, and |the
constructors, in detail.

If we are given the mathematical description of our
building-blocks, we must be able to produce the
mathematical description of the programs that|we
produce.

Our products will be someone else’s building-blocks.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

3 progcon.slides 11/23/99

= McMaster University =

Two Programs that “Do Nothing”

Definition 1: A program that quits. We call thjs
programabort. It does nothing and nothing can ever
happen after it runs.

Definition 2: A program that changes nothing. \We
call this progranskip.

» The first does nothing because it never even allows the
program after it to run.

» The second does nothing because it terminates
without making any changes to the state.

This example illustrates the perils of using English
(or any other natural language) to describe programs.
English blurs the difference.

Our set of building blocks includes both of these
programs.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

2 progcon.slides 11/23/99

= McMaster University =

Program Constructors and their Description
A constructoris a way of combining two more
programs to get a constructed or larger program

We are going to learn 4 forms of program
construction:

« sequential composition

« conditional execution

« union (of conditional programs)
« iteration.

Any program constructed with only these tools is a
well-structured program. Well structured programs
are more easily understood.

We must assume that we have precise descriptions of
the component programs.

We must know how to find a precise description of
the constructed programs from the component
programs.

Only then will the programs that you construct be well
understood programs.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

4 progcon.slides 11/23/99

= McMaster University =

What Should W e know about ho w building
blocks and constructed pr ograms?

We should know the answers to the following
guestions:

* Which states can we start the program in if we
want termination to be possible?

» Which states can we start the program in if we
want termination to be certain?
(safe statey

If we start a program in a state where termination is
possible, what final states are possible?

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

5 progcon.slides 11/23/99

= McMaster University =

Using “;”: Some Simple Examples

In the following assume we have only two (finite)
integer variables, x and y, available. x’ denotes|the
value of the variable x after the program executes; 'y
denotes the value of y before any execution.

(1) Problem: (xX'='x+}0(y' ="'y+1)
Solution: xO x+1;yOd y+1
Solution: yO y+1; xO x+1

(2) Problem: (x'= ‘x+y)d(y' = ‘y+1)
Solution: xO0 x+y; yO y+1
Solution: yO y+1; xO x+y-1

(3) Problem: (x'=x+y)O(y' = ‘'y+1)
Solution: x0O x+y+1; yO y+1
Solution: yO y+1; xO x+y

(4) Problem: (x'=‘x+'y)d(y' = ‘x+1)
Solution: yO x +1; ??7?
Solution: xO x+y; yO x-y+1

Even in these simple examples, programming can be
tricky, mistakes can be made, and one must work
with discipline and care. Some simple problems
cannot be solved without imposing limits on the

values of x and y or by using an extra variable.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

7 progcon.slides 11/23/99

= McMaster University =

The Constructor “;”

If A and B are programs, A;B is a program.
Intuitively, A;B means do A, then do B.

A leaves the machine in some state; B starts in

that

state. The constructed program starts in the state that

a started in and ends in the state that b stops in.

A safe state for A;B must be a safe state for A and,
must always lead to safe states for B. Otherwise it

isn't safe.

Note that this constructor works for any program

and B, not just primitive programs A and B could be

thousands of lines long and very complex. T
simple definition remains valid.

This constructor is found in every programmi
language, usually denoted by “” or a new i
character.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

6 progcon.slides 11/23/99

= McMaster University =

Swapping T wo Values

Consider the follwing problem:
x ="y) Oy =%

Remember that we hagaly 2 variables!
Can we do it? - Under certain conditions.
Solution: xO x+y; yO x-y; X O X-Yy

The condition: x must have enough states to g
x+y. If the initial values are too large, it fails.

What if we hae a third ariable, t?
Solution: t0 x; xO y; yO t

Question: Does the specification allow t to chang

Answer: Yes, the specification places no restricti
on what you do to t.

Note: Space-Generality trade-off. Without the e
variable we cannot swap all possible values.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

8 progcon.slides 11/23/99

[72)

A
his

ng
ne

tore

e?
ons

tra

= McMaster University =

Using “;” With P owerful Pr ograms

Suppose that, instead of our normal arithmetic
operations we had operations on arrays.

For example, “A >20” is an expression whose
value is an array, same shape as A, witlua

where A had an element with value greater than 20
and afalsein all other positions.

BO A>20 assigns that value to B.

A/B, where A and B have the same shape and A is an
array whose elements consisttaie andfalseis an
expression that “filters” B, its value is an array wijth

the corresponding elements of B in positions where
there is drue in A and 0 elsewhere.

2A is an expression whose value is the sum of|the
values of the elements in A.

Problem: Consider the effect of:
BO A>20; COB/A; DO >C
What does this program do?

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

9 progcon.slides 11/23/99

= McMaster University =

Partial Syntax f or Programs

<program> ::= <simple program>
|<composed program>

<simple program> ::=

<primitive program>
| (<program>)
| more to come

<composed program>::=
<simple program> ; <simple program>
|<composed program> ; <simple program>

<primitive program> will not be fully defined but
will include <expression>, <assignmentskip,
abort, andmore to come

The above is the first step towards defining a
complete notation for designing programs.

| call the notation (language) DAD. It features
simplicity, ease of analysis, and generality. We use it
as a tool for program planning.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

11 progcon.slides 11/23/99

= McMaster University =

A general notation for constructing programs

The important principles of program construction
apply to all practical languages.

In this class we will use a simple notation to describe
how our programs are constructed.

These program plans can be translated into any other
“imperative” programming language.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

10 progcon.slides 11/23/99

= McMaster University =

Do we Need Other Program Constructors?

“" is surprisingly powerful.

With a “rich” set of primitive programs, we can do a
great deal just by sequencing the invocations of those
programs.

The programming language APL is famous for it's
“one-liners”. All they use is “” to achieve
composition of the powerful built-in functions.

APL's primitive libraries werenot built using “;
alone. We do need more.

« We need to limit the conditions under which a
program will be executed (conditionals).

* We need to provide for alternatives (branches).
» We need to provide for iteration (loops).

We will have to define these program constructors
precisely, telling how to find the function/relation |of
the constructed program.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

12 progcon.slides 11/23/99

= McMaster University =

Guarding Pr ograms

We need to tell the computer under what conditio
program may be executed.

We will do this by providing programs that say “ya
or “nay”, i.e. true or false to the execution of
program. The information will be left in th
unnamed variable #, the place where expres
values are deposited.

These programs are normal boolean express
They evaluate tatrue or false We use them as
guards. Guardsshould not change the state of 3
other variables.

Definition: If “g” is a guard, and “P” is a prograr
then, “g — P” is aguarded program.

Note a guarded program it a program.

Meaning: The program, P, should be executed g
if the guard, g, evaluates to true.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

13 progcon.slides 11/23/99

= McMaster University =

What does a guar ded pr ogram mean?

¢ The guarded program terminates only if the gu
istrue.

« Inthose cases it behaves exactly as g;P would.

¢ There may be states where the guard itself m
not terminate, or states where the guard yie

NS a

<

DD

ion

[%2]

jons.

ny

n

nly

ard

ight
olds

true but terminates in a state where P is not guar-

anteed to terminate.

e These states are “traps”; the computer can
trapped by using g to see if P can be executed
believing what g reports.

A guarded program should not be used in states
are traps for it.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

15 progcon.slides 11/23/99

get
and

that

= McMaster University =

Describing Guar ded Programs

For any guarded program we want to know:

» What will the guarded program do if executed

* When is termination of the guarded progr
guaranteed?

In what states would the guard sayue, but
termination isnot guaranteed?

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

14 progcon.slides 11/23/99

= McMaster University =

Combining Guar ded Programs using “|”

It is useful to combine guarded programs thar
combine unguarded ones. The guards can be ug
tell the computer when to consider each of
guarded programs.

If A, B, are guarded programs then,

(Al B| ...) is a program.

Intuitively:

* One of the programs whose guard is true will
selected and executed.

* If no guard is true, the program will abort.

» If two or more guards are true, we are introduc
nondeterministic behaviour.

e The guards should be such that there are
“trap” states.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

16 progcon.slides 11/23/99

)

to
ed to
the

be

ing

no

= McMaster University =

Syntax f or Programs

<program> ::= <simple program>
| <composed program>

<simple program> ::=
<primitive program>
| (<program=>)
| (<guarded program list>)
| more to come

<guard> ::= <boolean expression>
<guarded program> ::=
<guard> - <simple program>
<guarded program list> ::=
<guarded program> | <guarded program list>

<guarded program>

<composed program>:;=
<simple program> ; <simple program>
|[<composed program> ; <simple program>

= McMaster University =

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

17 progcon.slides 11/23/99

= McMaster University =

Examples using guarded programs.

Problem:
Y'=MAXIMUM('X1,'’X2) ONC(X1,X2)

Solution: (X1<X2 - YO X2
| X2<X1- YOX1

)

Problem: y’ = SQRT(|'X|)

Solution: (x<0- yO SQRT(-x)
[x>0 - yO SQRT(X)
| x=0- yOdO
)

What does the f ollo wing pr ogram do?

(X>7-X0OX+1
| X <7 - XOX-1
| X=7 - X O 100
)

Vector Function Table
‘ X>7 ‘ X=7 ‘ X< 7 ‘

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

18 progcon.slides 11/23/99

= McMaster University =

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

19 progcon.slides 11/23/99

A Non-deterministic Program

Problem:
Vector Relation Table
X>7 X=7 X <7
X' | X =X+1 [(x=8) UX'=| X=x1
6) [J(X' = 100)
Ho
Solution:

(X>6 X 0X+1
|X<8 - X0OX-1
|X=7 - X 0100
)

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

20 progcon.slides 11/23/99

= McMaster University =

“Divide and Conquer” Programming

The guarded program is there to make sure th
program will only be executed when the guard s
true. Every programming language has a sim
feature, called conditional statement.

Using the guarded program list we can provide a
of alternatives. The constructed program will

at a
ays
ilar

list
do

what would have been done by one of its programs

with a guard that says true.
To check a guarded program list:

* Make sure that all the states will have at least
guard true.

¢ Check the guarded programs one at a time tq
if they will do the right thing when the guard
true. You never need to look at two guarded p
grams at once.

This is the part of thedivide and conquérapproach
to program construction/analysis. “Divide
Conquer” is theonly way to master complexity i

one

see
is
o_

=

nd

programs. Never try to understand (or write) a whole

program at once.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

21 progcon.slides 11/23/99

= McMaster University =

Syntax of Iteration in the Planning Language

If P is a program,
it Pti
is a program.

Execution of P will either be followed by anoth
execution of P or stop in accordance with decisi
madewithin P.

To determine whether to continue or stop
introduce two new primitive programs. These
used to indicate whether or not the iteration shg
continue.

O, pronounced “go”

e , pronounced “stop”

If O is executed, during P, P will be repeated.
If @ is executed, iteration will stop.

er
ons

we
are
uld

If both are executed, thatest execution determines

the effect.
Examples:
e ;o ;[is equivalent td]
0 ;0 ;e is equivalent te

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

23 progcon.slides 11/23/99

= McMaster University =

Why do we Need Iteration?

Without iteration the number of state changes
can happen is limited by the length of a program

» Everything is done only once.
* To do a lot, we must write a lot.

“Iteration” is a fancy word for repetition.

Each time that we execute a program that is b
iterated, part of that program must determ
whether the iterated program should be exec
again or not.

In some languages, the decision about repet
seemsto be made outside the iterated program,
this is misleading. The check for continuing is ma
every time the program is executed and so is pa
what is being repeated.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

22 progcon.slides 11/23/99

= McMaster University =

The body, P, ofit Pti

P can be any program provided that it executes
eithere or 0 at least once in its first execution.
If P never executee, iteration never terminates.

Non-terminating programs are useful in real-ti
systems but those are beyond the scope of
course.

In this course we are primarily interested
terminating programs.

One more useful Primitive program.

that

eing
ine
uted

tion
but
ade
rt of

me
this

n

init, which is “$ =start’, a boolean expression sets #

totrue if $ = start

init allows a program to do something special on
first execution of its body.

init is only useful in the body of a loop.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

24 progcon.slides 11/23/99

the

= McMaster University =

The Meaning ofit Pti

Wrapping a program P in iteration brackets means

that
* P will be executed at least once.

» During each execution of P either or ¢ must
be executed.

* When the execution of P is complete, the ite
tion will either continue or stop depending @
whether] or e was the last of those progran
to be executed.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

25 progcon.slides 11/23/99
= McMaster University =
Examples
Problem: x' = min(‘x,20)
Solution:

it (x>20 - (xO x-1;0) |~ (x>20) > @) ti

Solution:
(x>20 - xO 20 |- (x>20) - skip)

Problem:
(‘y=0) O('x=x") O(y'=0) O(z’="x xy)
Solution: z0O O;
it(= (y=0) - (z O z+xy O y-1;0)
1_ (y=0)- o)
i

This program doesn'’t stop for negative ‘y!

Problem:

((y>0) U('x=x") O(y'=0) O(z'="x x'y)) O((=
(y>0)) O(x=x) U(y=y)U(z' =0))

Solution: Z10;

it ((y>0) - (210 z+x;yl) y-1,10)

|=(y>0) — o)

o i

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

27 progcon.slides 11/23/99

ra-

S

= McMaster University =

Other lteration Constructs

In the following, B represents a boolean expression, R
arbitrary program, A, S, and C arithmetic expressions, ang
an integer variable.

« whileBdoP
it(B- (PO)|~B - e)ti

* repeatPuntil B
itP;(B-> e |-B - 0O)ti

* repeatPwhile B
itP;B- 0O |- B - e)ti

e for 10 A stepSuntil CdoP
10O A;
it(<C- (P;IO01+S;0)|1>C > @) ti

Using itti we can accomplish the iteration stateme
of other languages. First we design the loop, ther
pick the best construct.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

26 progcon.slides 11/23/99

= McMaster University =

an
lis

2nts
nwe

Final Syntax for Program Planning

<program>:::<simp|e program> |
<composed program>
| <guarded program list>

<simple program> ::=

<primitive program> | (<program>)

| it <program> ti
<guard> ::= <boolean expression>
<guarded program> ::=

<guard>- <simple program>

<guarded program list> ::=

<guarded program> |

<guarded program list> ‘|’

<guarded program>
<composed program>::=

<simple program> ; <simple program>

|<composed program> ; <simple program>

<primitive program> will include <expression>
<assignment>e , [1, skip, abort, andinit.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

28 progcon.slides 11/23/99

= McMaster University =

This is the whole syntax,

With it you can plan any program.

You can only produce well-structured programs.
It is easy to analyse.

It is easy to translate into other languages.

It makes excellent documentation.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

29 progcon.slides 11/23/99

= McMaster University =

Checking Termination

Problem:
Solution:
it(x>20 - (xO x-1;0) |~ (x>20) > @) ti

Solution:
it x>20;(#- (xO x-1;0) |~ (#) - o) ti

How can we be sure that a programwill always
terminate?

(1) Find a quantity thaialways decreases whenever t
body execute§] .

(2) Show thawvhenever that quantity if0t positive, the body
will executes .

X" = min(‘x,20)

How can we be surethat the programsabove will
always terminate?

(1) The value of x - 20 decreases whendveiis executed
(2) Whenever x - 20 is not positive, will be executed.

Note that many useful programs do not alw
terminate. Wealwaysneed to know whether or not
program will terminate.

he

ays
a

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

31 progcon.slides 11/23/99

= McMaster University =

The important properties of DAD

(1) Allows any known “fixed” algorithms.

(2) Symmetry supported in programs.

(3) Full Nesting of programs. (Box structure)

(4) Any program can be a statement in a bigger program.
(5) Complete semantics.

(6) Rules fit on one page.

Naming Programs

To ease readability we often give programs nam

Placing the name of a program, in a larger progr
has the same semantics as copying the text of
named program into that program.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

30 progcon.slides 11/23/99

= McMaster University =

Euclid’s algorithm for Greatest Common
Divisor (GCD)

Problem:

(x>0)O(y>0) O(x =y = GCD(X,y))

Some mathematicahéts:

*GCD is only defined for positive arguments.

«If x>y and x and y are not negative,
GCD(x-y,y) = GCD(x,y).

«for positive x, GCD(x,x) = x

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

32 progcon.slides 11/23/99

es.

am
the

= McMaster University =

Euclid’s algorithm for Greatest Common
Divisor (GCD)

Solution:

(x>0)O(y>0) -

it

(x>y- (xOx-y; O)

[y>x - (yO y-x;0)

[x=y — o)

ti)
Note thatthe outerguardpreventsterminationof the
program when ‘x =‘y = 0.

The iteration will terminate if

((‘x>0)('y >0))I(‘x="y).

(1) The value ofmax(x,y) - gcd(x,y)decreases, and x and
y remain positive, whenevét is executed with both
x and y positive. When x=y this quantity is zero.

(2) The program will execute if and only if x=y.

« If both x and y are initially positive, or both are initia
ly 0, the iteration will stop.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

33 progcon.slides 11/23/99

= McMaster University =

PROBLEM: Searching array A with indices 1 ... n
(@i, Alil="%) | -(0, Alil = %)
H;
il AliT= x true
present'= true false
H, G
ONC(x,A)
Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”
35 progcon.slides 11/23/99

= McMaster University =

The Advantages of Thinking in Terms of
Monotonically Decreasing Quantities.

The conventional way of thinking about terminat
is to try to think about all the possible things tk
might happen.

There are usually many possible execut
sequences.

Often we overlook some of them.

Looking at this decreasing quantity allows us
avoid trying to find all the sequences.

It is simple and certain.

on
nat

ion

to

If the loop terminates, there must always be a

guantity that decreases with each execution of
body.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

34 progcon.slides 11/23/99

= McMaster University =

PROBLEM: Searching array A with indices 1 ... n

SOLUTION:

j O 1; preserill false

it (A[j]=x — (present] true;e)

[=(A[]=X) - (<n- (0 #+L,0)|j=n- o))
ti

SOLUTION:
jd n; preserit false
it (
(A[j]=x - (present] true; e) |
= (Alll = %) - (i >1;
#- (U j-50) =@ - e)))

Exercises

(3) Explain the differences between these programs.
(4) Do they always get the same answer?
(5) What is the monotonically decreasing quantity for each?

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

36 progcon.slides 11/23/99

= McMaster University =

Finding the maximum in part of an array, A,
of N elements
Problem: partmax
(Oi,j<i<NO Afi] <max)O
(0 j <k'< N OA[K]= max' ONC(A,j))

Solutiort
maxO A[j];i O j; k0O j;
it
(i<N-> (@O;iD0i+1;
(max < A[i] - (maxO A[il; kOi)
| max =A[i] - skip)

[i=ZN > o)
ti
Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”
37 progcon.slides 11/23/99

= McMaster University =

Summary
Programs should be constructed using previously
defined programs, not written from start to end.

One can avoid big programs by building programs
from previously available, precisely described, parts.

It is essential to have a precise description of those
parts.

These programs can be systematically checked.
« Are all cases covered by a guarded program list?
* Is each part correct for the cases that it covers?

¢ Under what initial conditions will the iterations
terminate?

It is hard enough to get these little programs correct.
Tiny changes have a big effect. We must stress
writing well-structured small programs.

These principles apply, and can be applied, no matter
what programming language is used.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

39 progcon.slides 11/23/99

= McMaster University =

Silly Sort

Problem: permutation(‘A, A)YJ
(O, (A<i<N)O (A[i+1] <Al

Solution:

oL

it

(i<N = (partmax; A[K]O A[jl; Al] O max;
juj+10)

ti

Reminder: partmax
(Oi,j<i<NO Ali] <max)O
j <k’'s N OA[K']= max’ ONC(A,))

Note how this program was constructed using a

previously built program.

Note that we did not have to look at partmax, but
must look at it's description.

There aramuchbetter ways to sort!

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

38 progcon.slides 11/23/99

= McMaster University =

How can anyoneunderstand a large program?

The most complex program that we have seen U
now has included only one loop and a few guar
program lists.

These “simple” programs are not simple. A gr
many details must be correct for them to work.

Small lapses of attention are “fatal”. Small chan
can have a very big effect.

There is no such thing as “almost right”.

Textbook programs can be much larger. Some
be about 100 or more lines.

They are still small programs.

Industrial programs of 10,000 lines are small.
Typical programs are hundreds of thousands.
Many systems involve millions of lines.

How can such programs be right?

How dare we rely on them?

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

40 progcon.slides 11/23/99

we

p to

eat

ges

may

= McMaster University =

“Loop Invariants”

A loop invariantis a predicate that:
< will be true whenever execution of the loop begins

« will be maintained (keptrue) by each execution g
the body.

If you learn to think in terms of loop invariants y¢
won'’t have to think in terms of lengthy sequences
cases.

There is a loop invariant for every loop and in ev:
practical programming language. In the next pa
you will see many examples.

Loop invariants are another tool to help us av
having to try to find all possible sequences.

Instead of asking what changes during the loop
will ask what stays the same.

It makes the thinking easier.

ery
lges

oid

we

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

41 progcon.slides 11/23/99

= McMaster University =

Finding maximum and minimum elements
in an array.

maxmin=
il jai;
(integer w; wll [;
it
(w<u - (O;w0 w+1;
X[w] < X[i] - iOw
| Xiw] > X[]] - jOw
| X[i] <X[w] OX[w] <X[j] — skip))
[wau — o)
ti)

invariant:
X[[I=MINIMUM(X[l:w]) O
X[[I=MAXIMUM(X] I:w])

w is a local variable.
monotonically decreasing quantityw

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

43 progcon.slides 11/23/99

= McMaster University =

Finding maximum and minimum elements in
an array.

PROBLEM: maxmin (Array X with indices 1 ...)n

Assume functions MAXIMUM, MINIMUM defined on arrays an
subarrays.

(1<i1<us<n) -(1<1<usn)|
Hy
i X['J=EMINIMUM(X[l:u]) |true
il X[I=MAXIMUM(X[l:u]) | true
H, G
ONC (X, n,1, u)

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

42 progcon.slides 11/23/99

= McMaster University =

Sorting an Array X [1 ... N], N> 1

Problem: permutation(‘X,X"
(Oi,0<i<NO XTi] <X7i+1])

Solution:

ig 1;

it

(i<N S>X[]>X[i+1] -
(swap(X[i],X[i+1]); O :;i0 1)
IX[i] < X[i+1] - (IO i+1; O))

[iZN > o)
ti

invariant:(C0j, (0 <j<i)d X[j] <X[j+1])
monotonically decreasing quantity:

(number of out of order pairs, N-i).
Notes:
((a,b)<(c,d)E ((a < c)O ((a=c) 0 (b<d)))
Specificationof swap(a,bE
((@ ='b) O (b’ = ‘a)) ONC(all other variables)

Note that aliasing will limit our ability to implemer
this.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

44 progcon.slides 11/23/99

N

—

= McMaster University =

Summary

Building well-structured programs is the only way to
reduce the number of bugs. Reducing the number of
bugs is essential for reliabilty, safety, and sales.

Thinking in terms of invariants is the best way|to
design loops.

Finding the MDQ is the best way to be sure| of
termination.

We have to avoid trying to trace all the possible
sequences.

We have to avoid long programs by using previously
constructed programs.

Three principles:
< Divide and Conquer
« Monotonically decreasing quantities

e Loop invariants that “grow” to program specifications.
Be a program designer, not a language lawyer.

Design rules last. Programming languages change or
become out-of-date.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

45 progcon.slides 11/23/99

= McMaster University =

Looking for a match at position k?

integer array pat[0:p];
integer array dat[0:D]; booleanm;
Problem:
(m = (d i, (0<igp) O pat[il=datlk+i])) O
NC(pat,dat, p, D, k)
Solution:
(ks D-p;
(# - (integeri;id O;

it (pat[i]=dat[k+i];

#- (i<p;
£- (0 i+1;0)=#-(mO true;e)))
b# - (mO falsg o)))

ti)
| -# - m0O false)
loop invariant:
(0j, (0= j<i) O pat[j]=dat[k+j]) O

((i=p)U pat[p]=dat[k+p])
Note: To make the program a little more efficient, we had
to make the invariant more complex.
decreasing quantityp - i

Note that iteration may stop before (p-i) =0.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

47 progcon.slides 11/23/99

= McMaster University =

Generalised Pattern Matching
Given two strings, one calledat, one calleddat,
find the occurrences of pat in dat.
This problem arises in many applications.

The programs run on long data files and should he as
fast as possible.

Such programs should also be correct; some
commercial offerings are unreliable.

Early solutions werad hocand complex.
Thorough research has led to far better algorithms.

This program isnot easy it is a famous algorithm).
Many find it quite complex, but we can see view it as
a set of simple programs.

Any well-structured program can be viewed as g set
of simple programs.

That is theonly way we can understand complex
programs.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

46 progcon.slides 11/23/99

= McMaster University =

Is there a matc h at some position k, k =07

Let's not throw away the failure information. We
make i global so that we can use its value.
Problemk =0 [J
(m=(0i,0<i<pO patfij=dat[k+i])) O
(ksD-pQ
i'=minel({i| (O<igp)pat(ilzdat[k+i]} O{p+1}))
[JNC(pat,dat, p, D, k))
Solution
matchk=(k < D-p;
(#- (i0O 0

it (pat[i]=dat[k+i];

- (@0 i+1;i<p;

¢— O |=# - (m0O true;e)))

R# - (MmO false o)))

ti)
[-# - mO false)
if k< D-p, i' will indicate the first position in the
pattern where the match failed. If i’ >p, the match
has succeeded. This will be useful later.

v

1 Note: minel (x), where x is a non-empty set| of
integers, is the smallest value in x.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

48 progcon.slides 11/23/99

= McMaster University =

Is there a matc h at positionk, k=0 ?

Solution:

matchk= (k< D-p;
(#- (i0O 0
it (pat[i]=dat[k+i];
#-(@(0 i+1;i<p;
¢- O |-# -(mO true;e)))
F# - (MmO false o)))
ti)
[=# - mO false)

loop invariant:
(dj, (0<j<i) O pat[j]=dat[k+j])

The invariant has been simplified because
allowed to increment after a match has been fou

decreasing quantity. p+1- i

Note that iteratiormay stop before (p+1-i) =0, but
will stop when the quantity gets to 0.

is

—

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

49 progcon.slides 11/23/99

= McMaster University =

Finding the location of the next match
Is this the best we can do?

If there is no match at position k, should we sim
increment k by 1 or can we go further?

¢ Consider the pattern “dave”. If the match failed
the “e”, we could increment k by 3 without missi
a possible match.

e Consider the pattern “ddde”. If the match failed
the “e”, we must increment by 1.

on
g

on

This pattern match is the inner loop of many long

programs. Both pattern and data can be long.
should try to make this program as efficient
possible.

We
as

In the examples above, the amount of the increment

depends on the pattern alone, not the data. It
constant for most searches.

Time invested in computing properties of the pattern
will be repaid later if the program is used to search

large arrays.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

51 progcon.slides 11/23/99

= McMaster University =

Finding the location of the next match
Problem: NC(pat, dat, p,)

- @, (1>%0
(@i,0<i<pO
patfij=dat]+i]))

@1, (>%0
(0i,0<i<pO
patfij=dat]+i]))

H1

K| k' =minel({! | true
(0i,0<i<pO
patfil=dat]+i]) (I
>k}
m'= true false
i i'=p+l true
H2 G
Solution:
nextk=
(it

(k<D-p — (KO k + 1; matchk;
(M- e [~m- 0)
| k= D-p - (mO false;e))
ti)
This program will be discussed further on the followi
slides.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

50 progcon.slides 11/23/99

= McMaster University =

is a

Computing d(f)

d(f) = the increment to the first possible match.
f is number of matches before failure.

f = 0 means thérst character didn’t match.

f = p+1 means auccessful match.

If the pattern doesn’t repeat, d&f.

If the pattern does repeat, we must conside
possible match where the repetition begins.

For example, consider the patteabtabd'.
This pattern begins to repeat at position 3.

For f=0, 1, or 2, the repetition is irrelevant.
d(0)=d(1) =1.d(2) = 2.

For f = 3 (no second a), we should begin to comg
where the match failed, (increment by 3) &
because there is no “a”, we can skip one more. d
4

If we found the second a, but not b, move 4.
If we fail at the end, we start at the repetition.
If we succeed, we move 6 over.
d(4)=4,d(5)=3,d(6)=6

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

52 progcon.slides 11/23/99

)are

ut,
3)

= McMaster University =

Computing d(f)

For a pattermbcabcwe have:
d(0:6)=1124453

d(5) is different from the previous example because

the pattern is a complete repetition. If we failed
find the final c, we won't find it when we shift ov
by 3 positions either.

The success value (d(6)) is different because
pattern is a complete repetition and might be fo
again beginning where we found the second a.

Repetitions “don’t count” if the value we we
looking for when the match failed is the same as
value we would be looking for after advancing to
next possible match.

to

er

the
und

re
the
the

If the match succeeded, the repetition must always

count.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

53 progcon.slides 11/23/99

= McMaster University =

Computing d(f), for a value of f greater than 0

Problem: f >00 (

NC(f) Od'[f]=

minel({m|(m>0J(dj,0<j<f-m 0O
patj]=pat[j+m])d (- (pat[f-m]=pat]f]))}))

Solution: setdf
(integerm; mO 1,

it
(m<f - (repatm;
(r-
(f<p - (pat[f-m]=pat[f] - (mO m+1;0)
Ipat[f-mizpat[f] - o)
[f>p- o)
pr— (mOd m+1{1)))
[m>f_)
ti;
diff O m)

This program is discussed on the next slide.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

55 progcon.slides 11/23/99

= McMaster University =

Computing dI[f]: finding repetitions

We do not want to recompute d(f) so we w
compute it and store it in an array d[0:p+1]. First,
need to find relevant repetitions.

Problem: 0 <£ p+10J
r'=(0j,0<j<f-m O pat[j]=pat[j+m]) ONC(f,m)

Solution: repatne
(integerj; j O O; rQd true;

it

(j <fm - (‘pat[j]=patfj+m}
(# (0 j+50)
b#- (rQO false o)))

[j=2fm > o)

ti)

invariant:

r=(0i, (0<i <j) O pat[i]=pat[i+m])

decreasing quantity: f-m - j

Note that this will terminate immediately if f=n
Effectively, there is a zero-length repetition at f.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

54 progcon.slides 11/23/99

= McMaster University =

Computing d(f), f or f other than 0

Solution: setdf
(integerm; mO 1,

it
(m<f - (repatm;
(r-
(f<p - (pat[f-m]=pat[f] - (MmO m+1;0)
[pat[f-mizpat[f] - o)
[f>p— o)
[Fr- (mOd m+11)))
[m>f_ o)
ti;
diff 0 m)

invariant: m< minel(
{a](>0)0(0j0<j<f-q0
pat[j]=pat[j+a])J (= (pat[f-q]= pat[f]))})

decreasing quantity: (f-m+1)

repatm satisfies:
0<fp+ld
r'=(0j,0<j<f-m0 pat[j]=pat[j+m])}) CINC(f,m)

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

56 progcon.slides 11/23/99

ill
we

—

= McMaster University =

= McMaster University =

Computing d[f], f orO<f <p+1

Problem: (J f, O<f < p+10
d’[f]= minel(
{m|(m>0)Xj,0<j<f-m O
pat[jj=pat[j+m])C (- (pat[f-m]=pat[f]))}))

Solution: (d[0]O 1;

fOoO 1;

it

(f < p+1l - (setdf; fO f+1;0)
|f>ptl- o)

ti)

loop invariant:(0 g, 0=sq<f O
d[g]= minel({m|(m>0)J(0j,0<j<g-m O
pat[j]=pat[j+m])l(= (pat[q-mFpat[]))}))

decreasing quantity: (p+2 -f)

Back to Pattern Matching, using d[f]

Problem: NC(pat,dat,p,d§((0i,0<i<pO

pat[i=dat[‘k+i]) Ji=p+1(0f,0<f<p+101 d[f]=d(f))) O

@L4>K0 | -~@,L(>K0
(0i,0<i<p0|(@i0<ispO
patfij=dat]+])) | pat[il=dat]+i))

H1

K| =minel({l | true
(D i,0<i<pl
pat[ij=dat]+i)) [
>k}
m’= true false
i P = p+l true
H2 G

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

57 progcon.slides 11/23/99

= McMaster University =

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

58 progcon.slides 11/23/99

= McMaster University =

Solution: nextk =

(it
(k<D-p - (kO k+d[i]; matchk;
(M- e |[=m- 0))
| k=D-p- (m0O false;e))
ti)
matchk satisfiek = 0 J
(m=(0i,0<i<p0 pati]=dat[k+i])) O
(k€D-p O
i'=minel({i| (0<|<p)[|oat[|]¢dat[k+|]} {p+1})
[INC(pat,dat, p, D, k))

Can matchk be improved?

Problem:
‘i=zminel({j |(Ogjgp+1)0
- (patfjJ=datlk-d[}+])}) O
(m'=(},0<j=<pl patfjl=datfk+]])) U
(O f, O<f<p+10 d[ﬂ d(f)) 0 (ks D-pO
i'=minel({j | (0<j < p+1)
[(pat[j]=dat[k+j])}) 0ONC(pat,dat, p, D, k)
Solution:
matchk=(k < D-p;
(# - (10 max(0,i-d[i]); mO true;

it (pat[i]=dat[k+i];

#- (0 i+1;i<p; #-> O-# >e))
[-# - (mO false o)))

ti)
[-# - mO false)
loop invariant:
(m=(0},0<j<ilO pat[jJ=dat[k+j])) O

(-m O pat[i] # dat[k+i])
decreasing quantity: p+1- i
Note that iteration may stop before (p+1-i)=0.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

59 progcon.slides 11/23/99

Department of COMPUTING AND SOFTWARE

Software Engineering Programme
“connecting theory with practice”

60 progcon.slides

11/23/99

= McMaster University =

Building Blocks for Pattern Matching

Rather than try to write the algorithm in a single step,
we built these components:
« A simple program to see if a match was present at a previgusly
specified position.
¢ matchk, an improved version that reported where a match| first
failed.

* nextk, a program that, if run after one match has been found in the
data, finds the next place where there is a match and reports where
it begins.

e repatm, a program that looks for repetitions in the pattern, not in
the data. The repetitions must begin at m and end where the match
as failed.

e setdf, a program that computes d(f) the maximum safe
displacement if f marks the place where a match failed (f > 0).

« A program that computed the displacement, d(f) for all possible f
and stored their values in an array d[f].

« Animproved version nextk, that uses d[f].

* Animproved version of matchk that does not look at places where
we already know there was a match.

The final versions of nextk and matchk can be|the
building blocks for programs to search long files.

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

61 progcon.slides 11/23/99

= McMaster University =

Lessons to be Learned

These are useful algorithms for many applications, the algori
are useful in themselves.

This is not an algorithm that the average engineer or progran
would think of.

Engineers that make frequent use of programs, or who
frequently used programs should know the literature
algorithms.

The conditions under which an algorithm will work must
carefully specified.

This algorithm, written out in full, would be incomprehensible
most of us.

We have presented (developed) it in small steps and there
real need to look at it all together.

The reason we don't have to look at it all at once is becaus
have precise descriptions of the parts.

Even with this method, programming is, and always will be a
€error prone process.

Testing is essential.

hms

nmer

yrite
on

be

for

is no

e we

ery

When efficiency is important, computations should be moved out

of inner loops wherever possible.

Small improvements in an algorithm often make an invariant n
complex.

Structure can always be maintained!

62

Department of COMPUTING AND SOFTWARE
Software Engineering Programme
“connecting theory with practice”

progcon.slides 11/23/99

nore

