SE 2A04 Fall 2001

Recursion

Instructor: W. M. Farmer

Revised: 4 October 2001

Recursion Example: Factorial

MODULE Factorial;
IMPORT QOut;

PROCEDURE FactRec#*(x: LONGINT): LONGINT;
(* Computes the factorial function using (nontail) recursion. *)
BEGIN
IF x < O THEN
Out.String("Input must be nonnegative (ignore output).");
RETURN -1;
ELSIF x = O THEN
RETURN 1;
ELSE
RETURN FactRec(x - 1) * x;
END;
END FactRec;

END Factorial.

What is Recursion?

e Recursion is a method of defining something in terms of
itself
— One of the most fundamental ideas of computing
— An alternative to iteration (loops)

— Can make some programs easier to describe, write,
and prove correct

e Both procedures and data structures can be defined by
recursion

— A set of procedures or data structures can be defined
by mutual recursion

Semantics

e A recursive procedure can be understood as:
— A definition of a procedure with an infinite body
— An operational definition (little machine)

— An implicit definition of a procedure that satisfies a
certain property

e The use of recursion requires care and understanding

— Recursive definitions can be nonsensical (i.e.,
nonterminating)

— Sloppy use of recursion can lead to total confusion

Implementation

e Recursive procedures are usually implemented using a
call stack
— The stack contains one frame per procedure call

— The nesting depth of recursive calls does not need to
be calculated before execution

e If the nesting depth of recursive calls is infinite, the
procedure will run until the stack space is exhausted

Tail Recursion

e A procedure is tail recursive if nothing is left to do after
each recursive call in the procedure body

e Tail recursive procedures can be made to execute in
constant space:

— In some programming languages, e.g., Scheme, the
compiler ensures that tail recursive procedures execute
in constant space

— In other programming languages, tail recursive
procedures can be redefined using iteration (which
executes in constant space)

Quality Issues

e Termination is shown using a well-founded ordering

— E.g., a strictly decreasing natural number value

e Correctness can be proved using induction

o Efficiency
— In some cases, recursion can be highly inefficient in
the use of space

— In some cases, recursion can be executed in constant
space

Tail Recursion Example: Factorial

MODULE Factorial;
IMPORT QOut;

PROCEDURE FactTailRec*(x: LONGINT): LONGINT;
(* Computes the factorial function using tail recursion. *)
BEGIN
RETURN FactTailRecAux(x,1);
END FactTailRec;

PROCEDURE FactTailRecAux(x: LONGINT; accum: LONGINT): LONGINT;
BEGIN
IF x < O THEN
Out.String("Input must be nonnegative (ignore output).");
RETURN -1;
ELSIF x = O THEN
RETURN accum;
ELSE
RETURN FactTailRecAux(x - 1, accum * x);
END;
END FactTailRecAux;

END Factorial.

The BESTT Logic

e BESTT is a Basic Extended Simple Type Theory

— Higher-order predicate logic

— Includes type variables, lambda notation, and a
definite description operator

— Has support for reasoning with tuples, lists, and sets

e Several of the principal computer theorem systems are
based on simple type theory: HOL, IMPS, PVS, TPS

e Reference:

W. Farmer, “A Basic Extended Simple Type Theory",
http://imps.mcmaster.ca/wnfarmer/publications.html

Trees Example: Planning Language 1

e Data Structure Type:

Tree = record
atomic: Boolean; (* true if integer; false if pair x)
int: Integer;
left: Tree;
right: Tree;
end Tree;

e Constructors:

procedure MakeIntegerTree(i: Integer): Tree;
return (true, i, null, null);
end MakelIntegerTree;

procedure MakePairTree(tl,t2: Tree): Tree;
return (false, null, tl1, t2);

end MakePairTree;

11

Trees Example: Mathematical

e The set Tree of binary integer trees is defined
recursively by the following statements:
1. If zx € Z, then z € Tree.
2. If z,y € Tree, then (z,y) € Tree.

e The following tree functions are defined recursively as
follows:

Vt: Tree.sum(t) = if(t € Z,
ﬁu
sum(fst(t)) + sum(snd(t)))

Vt: Tree. ht(t) = if(t € Z,
Hu
1 4+ max(ht(fst(t)), ht(snd(t))))

10

Trees Example: Planning Language 2

e Selectors:

procedure IsIntegerTree(t: tree): Boolean;
((t.atomic =-> return true) |
("t.atomic -> return false))
end IsIntegerTree;

procedure IsPairTree(t: tree): Boolean;
return “IsIntegerTree(t);
end IsPairTree;

procedure GetInteger(t: tree): Integer;
((IsIntegerTree(t) -> return t.int) |
(IsPairTree(t) -> abort))
end GetInteger;

12

Trees Example: Planning Language 3

procedure GetLeftTree(t: tree): Tree;
((IsIntegerTree(t) -> abort) |
(IsPairTree(t) -> return t.left))
end GetLeftTree;

procedure GetRightTree(t: tree): Tree;
((IsIntegerTree(t) -> abort) |
(IsPairTree(t) -> return t.right))
end GetRightTree;

Trees Example: Planning Language 5

e Tree procedures:

procedure Sum(t: Tree): Integer;
((IsIntegerTree(t) -> return GetInteger(t)) |
(IsPairTree(t) -> return Sum(GetLeftTree(t)) +
Sum(GetRightTree(t)))

end Sum;

procedure Height(t: Tree): Integer;
((IsIntegerTree(t) -> return 1) |
(IsPairTree(t) ->
return 1 + Max(Height (GetLeftTree(t)),
Height (GetRightTree(t)))))
end Height;

13 15
Trees Example: Planning Language 4 Trees Example: Oberon 1
e Mutators: MODULE Trees;
procedure SetInteger(t: tree; i: Integer); IMPORT Qut;
((IsIntegerTree(t) -> t.int := i | (* Data structure type: *)
(IsPairTree(t) -> abort))
TYPE
end SetlInteger;
Tree* = POINTER TO TreeRec;
procedure SetLeftTree(t: tree; tl: Tree); TrecRec = RECORD
AaHmHHdmmmHHHmmAdv -> abort) | atomic: BOOLEAN; (* True if integer; false if pair *)
(IsPairTree(t) -> t.left := t1)) int: INTEGER;
. : left: Tree;
end SetLeftTree; right: Tree;
END;
procedure SetRightTree(t: tree; t2: Tree);
((IsIntegerTree(t) -> abort) |
(IsPairTree(t) -> t.right := t2))
end SetRightTree;
14 16

Trees Example: Oberon 2

(* Constructors: *)

PROCEDURE MakeIntegerTree*(i: INTEGER): Tree;

VAR t: Tree;

BEGIN
NEW(t);
t~.atomic := TRUE;
t”.int := i;
t~.left := NIL; (* Denotes null tree *)
t”.right := NIL; (* Denotes null tree *)
RETURN t;

END MakelIntegerTree;

PROCEDURE MakePairTree*(t1,t2: Tree): Tree;
VAR t: Tree;
BEGIN
NEW(t);
t~.atomic := FALSE;
t~.int := 0; (* Denotes null integer *)
ﬁ).Hmmﬁ"uﬁ

END MakePairTree;

Trees Example: Oberon 4

PROCEDURE GetLeftTree*(t: Tree): Tree;
BEGIN
IF IsIntegerTree(t) THEN
Out.String ("Error in Trees.GetLeftTree:
argument is an integer tree.'
HALT(20); (* Abort program *)
ELSE
RETURN t~.left;
END;
END GetLeftTree;

PROCEDURE GetRightTree*(t: Tree): Tree;
BEGIN
IF IsIntegerTree(t) THEN
Out.String("Error in Trees.GetRightTree:
argument is an integer tree.");
HALT(20); (* Abort program *)
ELSE
RETURN t~.right;
END;
END GetRightTree;

17 19
Trees Example: Oberon 3 Trees Example: Oberon 5
(* Selectors: *) (* Mutators: *)
PROCEDURE IsIntegerTree*(t: Tree): BOOLEAN; PROCEDURE SetInteger*(t: Tree; i: INTEGER);
BEGIN BEGIN
RETURN t~.atomic; IF IsIntegerTree(t) THEN
END IsIntegerTree; t7.int =i
ELSE
PROCEDURE IsPairTree*(t: Tree): BOOLEAN; Out.String("Error in Trees.SetInteger:
BEGIN argument is a pair tree.");
RETURN ~IsIntegerTree(t); HALT(20); (* Abort program *)
END IsPairTree; END;
END SetInteger;
vwmmmwmwm GevTntegorx(v: Tree): TNTEGER; PROCEDURE SetLeftTree*(t: Tree; tl: Tree);
BEGIN
HmmmwwwwmmmHHHmwAdv THEN IF IsIntegerTree(t) THEN
v7.int; Out.String("Error in Trees.SetInteger:
ELSE . " . argument is an integer tree.");
Out.String("Error in Hnmmm.owannmmmﬂ" HALT(20); (* Abort program *)
argument is a pair tree."); ELSE
HALT(20); (* Abort program *) t~.left := ti;
END; END;
END GetInteger; END SetLeftTree;
18 20

Trees Example: Oberon 6

PROCEDURE SetRightTree*(t: Tree; t2: Tree);
BEGIN
IF IsIntegerTree(t) THEN
Out.String("Error in Trees.SetInteger:
argument is an integer tree.");
HALT(20); (* Abort program *)
ELSE
t7.right := t2;
END;
END SetRightTree;

(* Tree Procedures: *)

PROCEDURE Sum* (t: Tree): INTEGER;
BEGIN
IF IsIntegerTree(t) THEN
RETURN GetInteger(t);

Pattern Matching: New Problem

e Input:

dat: Array n of Character (data string)
pat: Array p of Character (pattern string)
mat: Array n of Boolean (match array)
s: N (start of potential match)

m: N (number of matched characters)

e Output:

mat: Array n of Boolean (match array)

e Invariant I:

ELSE (m<p) A
RETURN Sum(GetLeftTree(t)) + Sum(GetRightTree(t)); p
END; (Vi: N. 0 <4< min(s,n) D mat[i{] = match-at(pat,dat,z)) A
END Sum; (Vj: N.O0<j<mD pat[j] = dat[s + j])
END Trees.
21 23
Pattern Matching: Problem Pattern Matching: match
i procedure match(pat: Array p of Character;
e Input: dat: Array n of Character): Array n of Boolean;
dat: Array n of Character (data string) var mat: Array n of Boolean;
pat: Array p of Character (pattern string) (* initialize mat *)
var i : Integer;
i = 0;
e Output: it
((i < n -> mat[i] := false; go) |
mat: Array n of Boolean (match array) m vnus -vamdow: ases g
ti
e Definition of match-at: return match-aux(pat,dat,mat,0,0);
match-at(pat, dat,:) = end match;
Vj:N.O0<j<pDpat[j] = dat[i + j]
e Specification S:
Vi: N. O <i<nDmat[:] = match-at(pat,dat,)
22 24

Pattern Matching: match-aux

procedure match-aux(pat: Array p of Character;
dat: Array n of Character;
mat: Array n of Boolean;

s: Natural;

m: Natural): Array n of Boolean;

((s + p > n -> return mat) | (*
(s + p<=n->

(pat[m] = dat[s+m] -> (*

m:=m+ 1;
((m =p => (*
mat[s] := true;
s := s + advance(pat,m);
m :=0) |
(“(m = p) -> skip))) | (*

(" (pat[m]l=dat[s+m]) -> (*
(* mat[s] remains false *)

s := s + advance(pat,m);

m 0)))

return BWﬁowlsznvmd.deqawd.m.av
end match-aux;

dat is exhausted *)
next char is matched *)

pat is matched *)

pat is not (yet) matched *)
next char is not matched *)

25

Pattern Matching: Conclusions

1. The recursion terminates since (s, m) strictly increases in
lexicographic order until s4+m >n

2. I is an invariant of the recursion:

e] is true when match calls match-aux

e [is true each time match-aux calls itself

Hence, I is true when match-aux terminates

Therefore, match satisfies S (provided advance is correct)

e Note: advance is correct, but not necessarily optimal,

if it always returns 1

26

