SE 2A04 Fall 2001

Software Modules

Instructor: W. M. Farmer

Revised: 24 October 2001

Components of a Module
A software module has two components:

1. An interface that allows other modules to use the
services the module provides

e The interface is a language for requesting the services

e The primitive components of the language are
usually procedures called interface functions or
access functions

2. An implementation of the interface that provides the
services offered by the module
e The implementation is hidden from other modules
e The interface functions are implemented together and
may share data structures
e Theimplementation may utilize the services offered by
other modules

What is a Software Module?

e Modules are relatively self-contained systems that can be
combined to make large systems (Parnas)

e Design is often the assembly of many previously designed
modules (Parnas)

— Modules are interconnectable and interchangeable parts

— Modules can be designed, implemented, tested, and
changed independently

e A software module is a cohesive collection of data and
procedures that provides a set of services to other
modules

— Programs and procedures are usually not modules
— Modules usually have state

Examples of Modules

e An object

— Consists of data (fields) and procedures (methods)
— Has state and behavior

e An abstract data structure

¢ An abstract data type (ADT)

Structure of an Oberon Module

e Interface:

— Exported type declarations

— Exported constant declarations

— Exported variable declarations (not recommended)

— Exported procedure declarations (interface functions)

e Implementation:

— Exported and local types

— Exported and local constants

— Exported and local variables

— Exported and local procedures

— Exported types, constants, variables, and procedures
of the imported modules

Example: Stack as Array 2

(* IMPLEMENTATION *)
(* Constants and variables *)
CONST max = 1000; (* maximum height *)

VAR h : INTEGER; (* height of stack *)
s : ARRAY max OF INTEGER; (* stack contents *)

(* Exceptions: *)

PROCEDURE EmptyStackException();
BEGIN
Out.String("Stackl.EmptyStackException: The stack is empty.");
HALT(33); (* Abort program *)
END EmptyStackException;

PROCEDURE FullStackException();
BEGIN
Out.String("Stackl.FullStackException: The stack is full.");
HALT(33); (* Abort program *)
END FullStackException;

Example: Stack as Array 1

MODULE Stackil;
IMPORT Qut;
(* INTERFACE %)

(*

PROCEDURE Reset();

PROCEDURE MaxHeight(): INTEGER;
PROCEDURE Height(): INTEGER;
PROCEDURE Empty(): BOOLEAN;
PROCEDURE Full(): BOOLEAN;
PROCEDURE Push(i: INTEGER);
PROCEDURE Pop() ;

PROCEDURE Top(): INTEGER;

*)

Example: Stack as Array 3

(* Interface functions *)

PROCEDURE Reset*();
BEGIN
h :=0;
END Reset;

PROCEDURE MaxHeight*(): INTEGER;
BEGIN
RETURN max;
END MaxHeight;

PROCEDURE Height*(): INTEGER;
BEGIN
RETURN h;
END Height;

PROCEDURE Empty*(): BOOLEAN;
BEGIN
RETURN Height() = 0;
END Empty;

Example: Stack as Array 4

PROCEDURE Fullx(): BOOLEAN;
BEGIN
RETURN Height() = MaxHeight();
END Full;

PROCEDURE Push*(i: INTEGER);

Example: Stack as Linked List 1

MODULE Stack?2;
IMPORT Qut;
(* INTERFACE %)

(*

BEGIN
IF “Full() THEN PROCEDURE Reset();
s[h] := i; PROCEDURE MaxHeight(): INTEGER;
h :=h + 1; PROCEDURE Height(): INTEGER;
ELSE PROCEDURE Empty (): BOOLEAN;
FullStackException(); PROCEDURE Full(): BOOLEAN;
END; PROCEDURE Push(i: INTEGER);
END Push; PROCEDURE Pop() ;
PROCEDURE Howﬁv" INTEGER;
PROCEDURE Pop* () ; *)
BEGIN
IF “Empty() THEN
h :=h - 1;
ELSE
EmptyStackException();
END;
END Pop;
9 11
Example: Stack as Array 5 Example: Stack as Linked List 2
PROCEDURE How*mv“ INTEGER; (* IMPLEMENTATION *)
BEGIN
IF “Empty() THEN (* Types *)
RETURN s[h - 1];
ELSE TYPE
EmptyStackException();
END; Stack = POINTER TO StackRec;
END Top;
StackRec =
RECORD
(* Initialization *) item: INTEGER;
rest: Stack;
BEGIN END;
h := 0;
END Stackl. (* Constants and variables *)
CONST max = 1000; (* maximum height of stack *)
VAR h: INTEGER; (* height of stack *)
s: Stack; (* start of stack list *)
12

10

Example: Stack as Linked List 3

(* Exceptions: *)

PROCEDURE EmptyStackException();
BEGIN

Out.String("Stack2.EmptyStackException: The stack is empty.");

HALT(33); (* Abort program *)
END EmptyStackException;

PROCEDURE FullStackException();
BEGIN

Out.String("Stack2.FullStackException: The stack is full.");

HALT(33); (* Abort program *)
END FullStackException;

(* Interface functions *)

Example:

PROCEDURE Push*(i: INTEGER);

VAR t: Stack;
BEGIN
IF “Full() THEN
NEW(t) ;
t~.item := i;
t~.rest := s;

FullStackException();
END;
END Push;

PROCEDURE Pop* () ;

Stack as Linked List 5

BEGIN
PROCEDURE Reset*(); IF "Empty() THEN
BEGIN s := s”.rest;
s := NIL; h :=h - 1;
h := 0; ELSE
END Reset; EmptyStackException();
END;
END Pop;
13 15
Example: Stack as Linked List 4 Example: Stack as Linked List
PROCEDURE ENNImHmﬁd*Av“ INTEGER; PROCEDURE Hoﬁ*mv“ INTEGER;
BEGIN BEGIN
RETURN max; IF “Empty() THEN
END MaxHeight; RETURN s~.item;
ELSE
PROCEDURE Height*(): INTEGER; EmptyStackException();
BEGIN END;
RETURN h; END Top;
END Height;
PROCEDURE Empty*(): BOOLEAN; (* Initialization *)
BEGIN
RETURN Emwmﬁdﬁv = 0; BEGIN
END Empty; Reset();
END Stack2.
PROCEDURE Full#*(): BOOLEAN;
BEGIN
RETURN Height() = MaxHeight();
END Full;
16

14

The Principles of Modular Design 1

1. Separation of Concerns
e Different parts of the problem are handled by different
modules (horizontal decomposition)

e What (i.e., interface) is separated from how (i.e.,
implementation) (vertical decomposition)

2. Abstraction

e Key ideas unlikely to change are expressed in the
interface

e Implementation details likely to change are left out of
the interface

17

Hallmarks of a Good Module

e The module is as independent from other modules as
possible

e The set of interface functions is small and orthogonal
e The interface language is highly expressive
e Implementation details are hidden from other modules

e The data structures of the implementation are accessible
only via the interface functions

19

The Principles of Modular Design 2

3. Information Hiding
e Design decisions likely to change are hidden from other
modules (design for change)
e Each module’s implementation is a “secret” (Parnas)

4. Little Languages Method

e The interface is designed as a language that can solve
a family of problems instead of just a single problem

e More abstract languages are defined in terms of more
concrete languages

18

Module Design Documents

¢ Module Guide

e For each module:
— Module Interface Specification (MIS)

— Module Internal Design (MID)

20

Module Guide

e The Module Guide lists all the modules of the software
product

e The following information is given for each module:

1. Module name

2. Module nickname (2 or 3 letters)

3. Service: Short informal description of what services
the module provides

4. Secret: Short informal description of what secret the
module hides

21

Example: MIS for Stacks ADT 1

e Imported modules: none

e Interface:

TYPE Stack;

CONST Bottom: Stack;

PROCEDURE Push(i: INTEGER; s: Stack): Stack;
PROCEDURE Top(s: Stack): INTEGER;

PROCEDURE Pop(s: Stack): Stack;

e Exceptions:

— EmptyStack : Stack — *

23

Components of an Input/Output MIS
1. Imported modules

2. Interface

e Types
e Constant names and types
e Procedure names and types

3. Exceptions

4. Input/output specification

22

Example: MIS for Stacks ADT 2

e Input/output specification (axioms):

1. Bottom is not a Push stack.
V¢ : INTEGER, s : Stack . Bottom 7= Push(%, s)

2. Push is one-to-one.
V11,%p : INTEGER, s1, sp : Stack .
Push(i1, s1) = Push(ip, s2) D (i1 = i2 A s1 = $2)

3. Induction axiom for stacks.
V P : Stack — BOOLEAN .
[P(Bottom) A

Vs : Stack . P(s) D Vi : INTEGER . P(Push(3,s))]

D Vs:Stack. P(s)

24

Example: MIS for Stacks ADT 3

4. Top applied to a Push stack.
Vi : INTEGER, s : Stack . Top(Push(i,s)) =1

5. Pop applied to a Push stack.
Vi : INTEGER, s : Stack . Pop(Push(i,s)) = s

6. Bottom has no top: EmptyStack exception.

Top(Bottom) T

7. Bottom has no pop: EmptyStack exception.

Pop(Bottom) T

Note: This MIS has the form of an axiomatic theory

(L,T) where

— L is the language defined by the interface of the MID

— [is the set of axioms of the MID

Example: Stacks ADT Module 2

StackRec =
RECORD
item: INTEGER;
rest: Stack;
END;

(* Constants *)

CONST Bottom* = NIL; (* represents the empty stack *)

(* Exceptions: *)

PROCEDURE EmptyStackException();
BEGIN
Out.String ("Stacks.EmptyStackException: The stack is empty.");
HALT(33); (* Abort program *)
END EmptyStackException;

25 27
Example: Stacks ADT Module 1 Example: Stacks ADT Module 3
MODULE Stacks; (* Local functions *)
IMPORT Qut; PROCEDURE med%Am“ Stack): BOOLEAN;
BEGIN
RETURN s = Bottom;
(* INTERFACE *) END Empty;
(*
TYPE Stack;
CONST Bottom: Stack; (* Interface functions *)
PROCEDURE Push(i: INTEGER, s: Stack): Stack; .
PROCEDURE Top(s: Stack): INTEGER; wmmMWUMWMmMEmWWAH. INTEGER; s: Stack): Stack;
PROCEDURE Pop(s: Stack): Stack; BEGIN. acks
*
) NEW(t);
t~.item := ij;
(+ IMPLEMENTATION *) t7.rest := s;
RETURN t;
END Push;
(* Types *)
TYPE
Stack* = POINTER TO StackRec;
26 28

Example: Stacks ADT Module 4

PROCEDURE Top#*(s: Stack): INTEGER;

BEGIN

IF "Empty(s) THEN
RETURN s~.item;

ELSE

EmptyStackException();

END;
END Top;

PROCEDURE Pop#*(s: Stack): Stack;

BEGIN

IF "Empty(s) THEN
RETURN s~ .rest;

Example: MIS for Lists ADT 2
e Input/output specification (axioms):

1. Nil is not a Cons list.
Vi : INTEGER, k : List . Nil # Cons(%, k)

2. Cons is one-to-one.
V11,%p : INTEGER, k1, ko : List .
Cons(i1,k1) = Cons(ip, ko) D (i1 =i A k1 = kp)

3. Induction axiom for lists.

ELSE . V P : List — BOOLEAN .
mzw%wd%mamowmxnmwdwodﬁvw [P(Nil) A
END Pop; Vk:List . P(k) D Vi : INTEGER . P(Cons(z,k))]
DVk:List. P(k)
END Stacks. R . R
4. Membership with respect to Nil.
Vi : INTEGER . Member(7,Nil)
29 31
Example: MIS for Lists ADT 1 Example: MIS for Lists ADT 3
5. Membership with respect to Cons.
e Imported modules: none .. .
V4,5 : INTEGER, k : List .
. Member (%, Cons(j, k)) ~
e Interface: if(i < 0, L, if(i = 0, j, Member(i — 1, k)))
TYPE List;
CONST Nil: List; 6. Membership with respect to Take.
PROCEDURE Cons(i: INTEGER; k: List): List; V4,7 : INTEGER, k : List .
PROCEDURE Member (i: INTEGER, k: List): INTEGER; Member (4, Take(j, k)) ~
PROCEDURE Take(i: INTEGER, k: List): List; if(i < 0, L,if(i < j,Member(i, k), L))
PROCEDURE Drop(i: INTEGER, k: List): List;
7. Membership with respect to Drop.
° mXOOU.ﬁ_ODMH <svb . HZ.Hm“ﬂm..mJ\ﬂ List .
Member (3, D] ~
— BadIndex : INTEGER X List — ember (i, Drop(j, k)) =
if(i < 0, L,Member(j + %,k))
30 32

Components of a Before/After MIS
1. Imported modules

2. Interface

e Types
e Constant names and types
e Procedure names and types

3. Exceptions
4. State constants (with value conditions)
5. State variables (with initial values)

6. Behavior rules

e Output rules
e State transition rules

e Exception rules
33

Example: Stack MIS 2

e Exceptions:

EmptyStack : BOOLEAN
FullStack : BOOLEAN

e Behavior rules:
Reset
| Input | Output | Transition | Exception |
| | [&'=nil__ | |

MaxHeight

Input | Output | Transition | Exception
max

35

Example: Stack MIS 1

e Imported modules: none

e Interface:

PROCEDURE Reset () ;

PROCEDURE wammMmUdAv“ INTEGER;
PROCEDURE Height(): INTEGER;
PROCEDURE Empty() : BOOLEAN;
PROCEDURE Full(): BOOLEAN;
PROCEDURE Push(i: INTEGER);
PROCEDURE Pop() ;

PROCEDURE Top() : INTEGER;

e State constants:
max : INTEGER (0 < max)

e State variables:

s : lists[INTEGER] (initially s = nil)
34

Example: Stack MIS 3

Height

| Input | Output | Transition | Exception |

| [s] | | |

Empty

| Input | Output | State | Exception |
_ |s| = 4

Full

::U:ﬂ Output | State | Exception

_ _m_ — max

36

Example: Stack MIS 4

Push
[Input | Output [Transition | Exception 7
| i : INTEGER | | s’ = cons(i,s) | Full() D FullStack |
Pop

| Input | Output | Transition | Exception 7
7 ; | s'=1ti(s) [Empty() D EmptyStack |

Top

::U:ﬂ Output | Transition | Exception
_ hd(s) Empty () D EmptyStack

37

References

1. D. Parnas, “On the criteria to be used in decomposing
systems into modules”, in: D. Hoffman and D. Weiss,
Software Fundamentals, Addison Wesley, 2001.

2. D. Parnas, P. Clements, and D. Weiss, “The modular

structure of complex systems”, in: D. Hoffman and D.
Weiss, Software Fundamentals, Addison Wesley, 2001.

39

Module Structure

e Simple structure:

— All module interfaces are accessible to all module
implementations
— All modules are indivisible units

e Access structure: Module interfaces are only available to
certain module implementations

e Submodule structure: Modules may be decomposed of
into submodules

— Example: Modules may contain local modules

38

