SE 2A04 Winter 2001

07. Verification and Analysis

Instructor: W. M. Farmer

Revised: 28 October 2001

Correctness

e Full correctness is very difficult to achieve and even more
difficult to demonstrate

e Some lack of correctness must usually be accepted
— It can be possible to achieve and prove full correctness
for some simple software products

— For most software products, full correctness is an
unaffordable dream

e Full correctness is an important goal but rarely necessary

e Inspection, testing, and mathematical verification can
show incorrectness, but mathematical verification is needed
to show correctness

T he Problem

e What behavior does the software product exhibit?
Is the behavior correct?
Is the behavior acceptable?

e Measures of software quality:
— Correctness: To what extend does the product satisfy
its requirements specification?
— Reliability: How probable is correct behavior?
— Trustworthiness: How probable is critical failure?

e Forms of verification and analysis:
— Inspection
— Testing
— Mathematical verification

Reliability

e Reliability is a useful measure when:
— All errors are considered equality important
— There are no critical failures

— The operating conditions are predictable
— We want to compare risks

e Testing is most useful for measuring reliability




Trustworthiness

Some systems have critical requirements that must be
fully satisfied by the software product

— It can be useful to rank the requirements by how
critical they are

e Critical requirements may concern such things as:

— Safety to users and the environment
— Information security
— High cost of failure

e Inspection and mathematical verification are useful for
measuring trustworthiness, but testing is not

e Unreliable products are often accepted, but
untrustworthy products with critical requirements
should never be accepted

Software Testing

e Testing can show instances of incorrectness, but it is
usually not practical for demonstrating correctness and
trustworthiness

— There are often an unbounded number of possible
inputs and environmental configurations

— Only what is executable (code but usually not
specifications) can be tested

e Positive testing results are not, by themselves, an
indication of software quality

e Testing can be used to assess reliability

e The smallest components and the lowest levels of the
uses hierarchy should be tested first

— Integration should be done only after the components
have been fully tested

Product Inspection

e The full product, both documentation and code, should
be inspected

e The inspection should be systematic

— Guided by checklists and questionnaires

e The inspection should be an active process

— Inspectors use the product documents

— They document their analysis and provide specifics

— They produce their own product descriptions from the
code which they compare with the product
specifications

e The inspection should be performed by a small team that
includes people with different kinds of expertise

Kinds of Code Testing

1. Black box testing

Based on the specification alone

e Test cases chosen without looking at the code
e Can be reused with a new implementation
Can be done independently of the designer

2. Clear box testing

e Based on the code
e Test cases chosen by looking at code
e Tests the implementation mechanism

3. Grey box testing

e Intended for modules with internal data structures

e Test cases chosen with respect to the internal data
structures

e Gives better coverage than black box testing




Kinds of Test Case Selection

1. Planned: Test cases selected to cover the behavior of
the code
e Based on specification (black box)
e Based on code (clear box)
e Based on internal data structures (gray box)

2. Wild random: Test cases selected using a uniform
random distribution

e Can find cases nobody thought of
e Can violate assumptions yielding spurious results

3. Statistical random: Test cases selected using an
operational profile

e Provides meaningful reliability figures
e Only as good as the operational profile

Mathematical Verification

e Main idea: Use the mathematics process to analyze the
behavior of a software product
— Most effective for high-level design
— Requires significant human expertise
— Requires effective machine support
— Can be very expensive

e The mathematics process consists of three activities:

1. Model creation: Create mathematical models that
represent mathematical aspects of the world

2. Model exploration: Explore the models by stating
and proving conjectures and by performing calculations

3. Model connection. Connect the models to one
another so that results obtained in one model can be

used in other models
11

General Recommendations (Parnas)

1. Test all possible paths through the program

e SO every possible statement is tested at least once

2. Test all data states
3. Test all degenerate data states

4. Test extreme cases

e Try very large numbers
e Try very small numbers

5. Test erroneous cases
6. Think of cases that nobody thinks of

10

Two Approaches

1. Informal but rigorous: Models are expressed using a
natural language and are explored by informal conjecture
proving and computation

e All the work is done by humans
e Usually not feasible for problems with many details

2. Formal and mechanized: Models are expressed and
explored using a mechanized mathematics system like
a theorem proving system or computer algebra system

e A major portion of the work is done by machine

In most applications, the mathematical verification will be a
mixture of these two approaches

12




Application to Software

e Problem: Does an implementation I satisfy a
specification S7?

e First solution:

— Choose an appropriate axiomatic theory T in an
appropriate background logic L

— Formalize I as aterm I'in T
— Formalize S as a unary predicate S

— Prove in L that §(I) is a theorem of T

e Second solution:

— Choose an appropriate background logic L

— Formalize I as a theory Ty in L

— Formalize S as a theory Tg in L

— Show that there is an interpretation of Tg in 17

13

References

1. D. Parnas and D. Weiss, “Active design reviews:

principles and practices”, in: D. Hoffman and D. Weiss,
Software Fundamentals, Addison Wesley, 2001.

D. Parnas, “Inspection of safety-critical software using
program-function tables”, in: D. Hoffman and D. Waeiss,
Software Fundamentals, Addison Wesley, 2001.

15

Final Comments

e Verification and analysis should be done at all stages in

the development of a software product—the earlier the
better

e Inspection, testing, and mathematical verification
complement each other

— Inspection is good for finding things that are missing
in the software product and in its documentation

— Testing is good for finding low-level errors, especially
coding errors

— Mathematical verification is good for finding high-level
errors, especially design errors

e The same documentation should be used for inspection,
testing, and mathematical verification

14




