SE 2A04 Fall 2001

Software Structure

Instructor: W. M. Farmer

Revised: 11 November 2001

Kinds of Software Structure

1. Data flow

2. Entity relationship
3. State transition
4. Abstraction

5. "“Uses”

6. Access

7. File

8. Code

Importance of Structure

e A good software product requires a good structure

e Several kinds of structure can be associated with a
software product
— Some structures are hierarchical (i.e., they can be
represented by a directed acyclic graph (DAG))
— Not all structures are equally important for a
particular software product
— Different structures may conflict with each other

Data Flow Structure

e How does data flow through the product?
How are outputs connected to inputs?

e Important when data flow is key

e Data flow diagrams are used to graphically represent
the structure

Entity Relationship Structure

e What entities are part of the product?
What relationships do the entities have?

e Important when data relationships are key

¢ Entity-relationship diagrams are used to graphically
represent the structure

Abstraction Structure

e What serve as specifications in the product design?
What serve as implementations in the product design?
Where does refinement occur in the product design?

e The structure is usually hierarchical
e The structure includes the module structure

e Abstraction diagrams are used to graphically represent
the structure

— Shows the satisfaction relation between
specifications and implementations

State Transition Structure

e What are the stable states of the product?
What are the possible state transitions?

e Important when state is key

e State transition diagrams are used to
graphically represent the structure

— May not be practical if there are too many states

Uses Structure

e (Parnas) A procedure A with specification S uses a
procedure B if A cannot satisfy S unless B is present and
functioning correctly

— A procedure A to calculate the average of a set of
numbers uses a procedure B to do addition

— A procedure B serving as a parameter of a procedure
A may be called but is not used in the sense above

e Benefits of a well-designed uses hierarchy:
— Product extension: procedures can be added without
modifying the existing procedures

— Product contraction: whole procedures can be deleted
instead of modifying existing procedures

— Characterization of possible subsets of the product
— Hierarchy of languages

Criteria for Allowing a Procedure A to
Use a Procedure B

1. A is simpler because it uses B

2. B is not more complex because it is not allowed to use A
3. There is a useful subset containing B and not A

4. There is no useful subset containing A and not B
References:

e D. Parnas, “Designing software for ease of extension and
contraction”, in: D. Hoffman and D. Weiss, Software
Fundamentals, Addison Wesley, 2001.

e D. Parnas, “On a ‘buzzword’: hierarchical structure”,
in: D. Hoffman and D. Weiss, Software Fundamentals,
Addison Wesley, 2001.

File Structure:
General Recommendations

e Express the structure of the software's design in
the software’s file structure

e Put files that work together in the same directory

e Use version control software to control and track
modifications to files

11

Access Structure

e Subjects are granted access privileges to objects on the
basis of trust

— Examples of subjects: Processes, procedures,
OO objects, modules

— Examples of objects: Variables, data structures, files,
procedures, OO objects, modules

e Unauthorized access is either:

— Made impossible or

— Prevented by an access control mechanism which
authenticates the subject and then checks whether it
is authorized to access the object

10

Kinds of Files

e A software system will often contain various kinds of files
for holding:
— Source code
— Object code
— Scripts
— Binary executables
— Data
— Documentation

e Use file name suffixes to distinguish between different
kinds of files

12

Modules

e Put all the files associated with a module in the same
directory

e The directory of a module should contain:

— A readme file describing the module and its use

— A status file listing what is finished and what needs
to be done

— An install file that will install the module
— A make file to automatically update module files

— A maintenance file explaining how to maintain the
module files

13

Code Structure:
General Recommendations

e Be consistent

As a general rule, choose clarity before efficiency

Express the structure of the software's design in the
software’s code

Follow the conventions of the programming language
being used

15

Interfaces

e Put the interface and the implementation of a module in
separate files or in separate parts of a file

— Enables an implementation to be easily replaced

— Other modules only need access to the interface file

— In C, the interface can be put in a header file while
the implementation is put in a source file

e List at the top of each implementation file the interfaces
that the implementation uses

— In C, this is done with an #include command

14

Keep the Code Simple

e Write procedures that fit on one screen
e Put at most one programming statement on a line

e Keep the following measures low:

— Loop nesting level
— Conditional nesting level
— Number of local variables in a procedure

e Avoid control structures that radically change state

— Exits, gotos, state jumps, self-modifying code

e Avoid nonstandard language features

16

Naming Programming Entities
e Naming is an important but difficult task

e One should employ a naming convention
— Names should be short and descriptive

— The more global the entity, the more descriptive
the name should be

— The more local, the shorter the name can be

e A name may include:

— Type of entity or return value
— Name of module

e Words in a name can be separated by underscores,
hyphens, and case changes, but avoid using spaces

17

Scope of Variables

e Make the scope of variables as narrow as possible

— Avoid global variables

e A wide-scoped variable is:

— Harder to maintain because its instances may appear
far apart from each other

— More easily corrupted because its data can be modified
by diverse procedures

e Decrease the scope of a variable by introducing
procedures for accessing the variable

19

Formatting Code

e Use formatting to display the structure of the code

— Indentation to display subordinate relationships
between code

— Alignment to identify blocks of code
— Blank lines to separate blocks of code

e Write fully bracketed code to facilitate maintenance
e Write code in tabular form whenever possible
e Avoid “wrap-around” code

e Line up comments to the right of the code

18

Procedures

Use a convention for naming and ordering parameters

e Make explicit and carefully control any side-effects

— Keep the use of side-effects to a minimum

Make the scope of procedures as narrow as possible

Any code fragment used more than once should be made
into a procedure

— Make procedures powerful

— Use simple procedures to invoke powerful procedures
in special ways

20

Code Documentation

e Components:

— Specification of what the code is required to do
— Pseudocode description of what the code does
— Commented code

— Proof that code’s behavior satisfies its specification
— Mapping of code specification back to the design

e Several approaches:

— Generate documentation from code files
— Generate code from documentation files
— Generate documentation and code from common files

21

Loops

e A loop terminates if there is a natural number value
that strictly decreases with each iteration of the loop

e An invariant of a loop is a formula ¢ such that:

— is true before the loop is executed
— is true after each execution of the body of the loop

e The documentation of each loop should include:

— A strictly decreasing natural number value
— A loop invariant

e Ideally, the strictly decreasing natural number value and

the invariant should be formulated before the loop is
coded

23

Commenting Code

e Begin every code file with:

— Copyright statement

— Authors

— Description of contents

— Revision date and log of changes made to the file

e Comment:

— Each variable declaration

— Each procedure definition

— Loops and larger blocks of code
— Anything that is not obvious

e Avoid excessive comments in procedure bodies

— Write code so that what it does is obvious

22

Min and Max of an Array: Problem

e Let
MinMax: Array[1,n](Z) - N x N
be the function that, given an array a € Array[1,n](Z),
returns a pair (¢,5) of indices of a such that

Vm:N.1<m<n=al[i] <alm] <alj]

e Problem: Implement MinMax

24

Min and Max of an Array: Solution

e procedure MinMax(a : Array[1,n](Z)) : N x N
i, 7,k N;
i, <=1, k<0;
it
k<k+4+1,;
(k<n—(a[k] < ali] i<k |
alk] > alj] = j <k |
ali] < alk] < alj] - skip)) |
(k > n — skip));
((k<n—go) | (k>n— stop))
ti;
return (4,7)
end procedure

e Strictly decreasing natural number value: n —k
e Loop invariant: Vm: N.1<m <k = a[i] <a[m] < aly]

25

Euclid’s GCD Algorithm: Solution

e procedure GCD(x:Z\y:Z):Z
((z>0ny>0—
it
((z>y— (z<=z—-y;go0)) |
(y>z— (y<=y—xg0)) |
(z =y — stop))
t1) |
(z <0Vy<0—error));
return x
end procedure

e Strictly decreasing natural number value: max(z,y)

e Loop invariant: max(z,y) > GCD(z,y) = GCD(zg, yg)

27

Euclid’s GCD Algorithm: Problem

e The GCD of two positive integers is the greatest
common divisor of the two integers

e Problem: Implement the function GCD: Z x Z — Z

e Some mathematical facts:

—Ifx>0,y>0, and z >y, then
GCD(z — y,y) = GCD(z,y)
— If z > 0, then GCD(z,z) ==

26

Error Messages

e Make error messages as informative as possible

— Indicate where in the code the error occurred
— Describe the situation that caused the error

e “Throw" lower-level errors to appropriate higher-level code

e Write error messages for both the user and the developer

28

Coding Structure: Conclusions

e Use an effective coding style

e Continuously look for ways of making your code:

— Simpler
— More powerful
— Better documented

e Make the structure of the software explicit

29

