Name

Student number

SE 2A04 Fall 2002

Midterm Test 2 Answer Key

Instructor: William M. Farmer

You have 50 minutes to complete this test consisting of 8 pages and 11
questions. You may use your notes and textbooks. Circle the best answer for
the multiple choice questions, and write the answer to the other questions
in the space provided. You are welcome to write your answers in pencil.
However, the instructor will not remark answers written in pencil if he thinks
it is possible that the answer was erased and rewritten. Good luck!

(1) [5 pts.] The Oberon-2 programming language allows local modules to
be declared within a module. Is this statement true or false?

(a) True.

(b)

(2) [5 pts.] A specification is usually considered to be less abstract than a
description. Is this statement true or false?

(a) True.
(b)

(3) [5 pts.] Let S1, S, and S3 be specifications such that Ss is a refinement
of 51 and S35 is a refinement of Sy. If a product P satisfies S3, it
necessarily satisfies S1. Is this statement true or false?

(a)

(b) False.



(4) [5 pts.] The following is a relational specification of a function.

R={(z,y) €ZXZ | z=yVz=—y}
D=7

How many functions satisfy this specification?
(a
(b

(c
(d

N = O

)
)
)
)

Infinitely many.

(5) [5 pts.] Which of the following should usually not be a component of
a module interface?

(a) A type.

(b)

(¢) A constant.
)

(d) A procedure.

(6) [5 pts.] What is the “secret” of the Vectors module of Lab Exercise
37

How vectors are represented.

(a)
(b)
(c)
(d) [ All of the above. |

How many vectors are stored.

When vectors are created.

(7) [5 pts.] Suppose a software system consists of the modules
Mo, My, ..., My.

Which change to My would not require any changes to the other mod-
ules My, ..., My?

(a) Removing a component from the interface of Mj.
(

(c ’Reimplementing a procedure in Mj.

)

b) Modifying the specification of the interface of Mj.
)
)

(d) All of the above.



(8)

[5 pts.] The Vector module of Lab Exercise 2 that is implemented
using cartesian coordinates is a finite state machine. If n is the size of
the type REAL, how many possible states can the module have?

(a)
(b)
)
)

o3

*

3

]

(c

(d3

3

[20 pts.] Let VecPlay be an Oberon-2 module that imports the Math
module and that contains the following declarations:

TYPE
Vector = POINTER TO VectorRec;

VectorRec =
RECORD
x: REAL;
y: REAL;
END;

CONST max = 1000;

VAR VecArray: ARRAY max OF Vector;

Each member of the type Vector represents a two-dimensional vector;
NIL represents the zero vector. VecArray stores 1000 vector repre-
sentations. For each v : Vector, let |v| denote the magnitude of the
vector represented by v. In this module VecPlay, write a single pro-
cedure named MaxMagInVecArray that takes no input and returns the
maximum of the set

{|v| | v is stored in VecArray}.



Answer

PROCEDURE MaxMagInVecArray(): REAL;
VAR i: INTEGER;

m,n: REAL;
v: Vector;
BEGIN
FOR i := 0 TO max - 1 DO
v := VecArrayl[i];

IF v # NIL THEN
:= Math.Sqrt((v™.x * v™.x) + (v7.y * v".y));
IFm<n THEN m := n END;
END;
END;
RETURN m
END MaxMagInVecArray;

=]
I

(10) [20 pts.] Below is an axiomatic input/output MIS for a definitional
extension of the Vectors module of Lab Exercise 3. Write a complete
Oberon-2 module named VectorsExt that implements the MIS. Points
will be taken off for any irrelevant extra code.

Axiomatic input/output MIS

(a) Imported modules: Vectors.
(b) Interface:

INTERFACE VectorsExt;
PROCEDURE Dot(u,v: Vectors.Vector): REAL;
PROCEDURE LexOrd(u,v: Vectors.Vector): BOOLEAN;
END VectorsExt.

(c) Exceptions: none required.
(d) Axioms:

e Vu,v:Vectors.Vector . Dot(u,v)) =
(Vectors.Xval(u) * Vectors.Xval(v)) +
(Vectors.Yval(u) * Vectors.Yval(v)).

e Yu,v:Vectors.Vector . LexOrd(u,v)) <
[Vectors.Xval(u) < Vectors.Xval(v) V
[Vectors.Xval(u) = Vectors.Xval(v) A
Vectors.Yval(u) < Vectors.Yval(v)]].



(11)

Answer

MODULE VectorsExt;
IMPORT Vectors;

PROCEDURE Dot*(u,v: Vectors.Vector): REAL;
BEGIN
RETURN (Vectors.Xval(u) * Vectors.Xval(v)) +
(Vectors.Yval(u) * Vectors.Yval(v))
END Dot;

PROCEDURE LexOrd*(u,v: Vectors.Vector): BOOLEAN;
BEGIN
RETURN (Vectors.Xval(u) < Vectors.Xval(v)) OR
((Vectors.Xval(u) = Vectors.Xval(v)) &
(Vectors.Yval(u) < Vectors.Yval(v)))
END Lex0Ord;

END VectorsExt.

[20 pts.] Below is a before/after MIS for a module that simulates a
clothes dryer. Write a complete Oberon-2 module named Dryer that
implements the MIS. Implement the DoorClosed exception as a warn-
ing. Points will be taken off for any irrelevant extra code.

Before/after MIS:

(a) Imported modules: none required.
(b) Interface:

INTERFACE Dryer;
PROCEDURE Start();
PROCEDURE CloseDoor();
PROCEDURE OpenDoor () ;
PROCEDURE InsertFilter();
PROCEDURE RemoveFilter();
END Dryer.

(c) Exceptions: DoorClosed: BOOLEAN.
(d) State constants: none.

(e) State variables:
¢ : BOOLEAN [initially ¢ = TRUE] (¢ means door is closed).
i : BOOLEAN [initially ¢ = TRUE| (¢ means filter is in).
r : BOOLEAN [initially » = FALSE| (r means dryer is running).



(f) Behavior rules:

’Name Fﬁanﬁﬁon ‘Emmpﬁon

Start d=c
V=1
r’ = if(¢ A i, TRUE, FALSE)

CloseDoor ¢ = TRUE
V=1
r'=r

OpenDoor ¢’ = FALSE
V=1
r=r

InsertFilter | ¢ =c¢ ¢ = DoorClosed
i’ = if(—c, TRUE, )
r =

RemoveFilter | ¢ =c¢ ¢ = DoorClosed
i' = if(—c, FALSE, 1)
r'=r

Answer

MODULE Dryer;
IMPORT Out;
VAR c, i, r: BOOLEAN;

PROCEDURE Reset () ;
BEGIN

c := TRUE;

i := TRUE;

r := TRUE
END Reset;

PROCEDURE DoorClosedException();

BEGIN

Out.String("Warning: Door is closed.")
END DoorClosedException;

PROCEDURE Start*();
BEGIN

r :=c&i
END Start;




PROCEDURE CloseDoor*() ;
BEGIN

c := TRUE
END CloseDoor;

PROCEDURE OpenDoor* () ;
BEGIN

c := FALSE
END OpenDoor;

PROCEDURE InsertFilter*();
BEGIN
IF ¢ THEN
DoorClosedException()
ELSE
i := TRUE
END
END InsertFilter;

PROCEDURE RemoveFilterx*();
BEGIN
IF ¢ THEN
DoorClosedException()
ELSE
i := FALSE
END
END RemoveFilter;

BEGIN
Reset
END Dryer.



