SE 2A04 Fall 2002

Lab Exercise 5

Instructor: William M. Farmer

Assigned: 08 November 2002
Demonstration due: 15 November 2002
Lab report due: 22 November 2002

The purpose of this lab exercise is to implement in C an abstract data type
(ADT) of vectors as a sorted linked list of records.

Step 1

Write a module in C named test-vectors that “black box” tests any mod-
ule named vectors implementing the module interface specification (MIS)
for a Vectors ADT given below. (Note: A module in C consists of two files,
a .h header file and a .c code file.)

Step 2

Write a module in C named vectors that implements the MIS for a Vectors
ADT given below. In addition, your implementation is required to:

(1) Represent a vector by a pointer to a record.
(2) Store the records as a linked list.

(3) The records in the linked list should be sorted lexicographically. This
means, if 1 and ry represent vectors (z1,y;) and (z2, y2), respectively,
then 71 comes before r9 in the linked list iff 27 < 25 or (x1 = x2 and

y1 < Y2).

(4) For all z,y € float, store in the linked list at most one record that
represents the vector (z,y).

(5) Except for the size of the type float, nothing in your implementation
should limit the number of records that can be stored in the linked
list.



Step 3

Construct a C program named test-mine that uses your test-vectors
module to test your vectors module.

Step 4

During the lab session on November 15, demonstrate the test-mine pro-
gram.

Step 5

Before or during the lab session on November 1, send a copy of your vectors
module to your receiver partner, and get a copy of your sender partner’s
vectors module. Construct a C program named test-partners using your
test-vectors module to test your sender partner’s vectors module.

Step 6
Write a lab report that includes the following:

(1) A copy of the Lab Exercise 5 Marking Scheme (which is available on
the course Web site) stapled to the front of your report.

(2) A copy of your test-vectors module and a brief explanation of its
design.

3) A copy of your vectors module and a brief explanation of its design.

5

3)

(4) The results of the test of your vectors module.

(5) The results of the test of your sender partner’s vectors module.
(6)

6) A discussion of the test results and what you learned doing the lab

exercise.
(7) A discussion of any problems you found with the MIS.
(8) A copy of the part of your log book relevant to this lab exercise.

The lab report is due no later than the beginning of the tutorial session on
November 22.



Axiomatic Input/Output MIS for Vectors ADT:

e Imported modules: none required

e Interface:

INTERFACE vectors;
TYPE vector;
CONST zero: vector;
PROCEDURE getvec(x,y: float): vector;
PROCEDURE xval(v: vector): float;
PROCEDURE yval(v: vector): float;
PROCEDURE add(u,v: vector): vector;
PROCEDURE mul(r: float; v: vector): vector;
END vectors.

e Exceptions: none required

e Axioms:

(1)

(2)

(3) Va,y : float . xval(getvec(z,y)
(4) Y,y : float . yval(getvec(z,y)
(5)
(6)
(7)
(8)

~— ~—

x
y.

xval(u) + xval(v).
= yval(u) + yval(v).

Vu,v : vector . xval(add(u,v))
)

Vu,v : vector . yval(add(u, v



