
SE 2A04 Fall 2002

Lab Exercise 6

Instructor: William M. Farmer

Assigned: 22 November 2002
Demonstration due: 29 November 2002
Lab report due: 06 December 2002

The purpose of this lab exercise is to implement using recursion a definitional
extension of the Trees module.

Step 1

Write a copy of the Oberon-2 module named Trees presented in the lectures.

Step 2

Write an Oberon-2 module named TestTreesExt that “black box” tests any
module named TreesExt implementing the MIS given below.

Step 3

Write an Oberon-2 module named TreesExt that implements the MIS given
below. Your implementation is required to implement each procedure of the
interface using recursion.

Step 4

Construct an Oberon-2 program named TestMine that uses your TestTreesExt
module to test your TreesExt module.

Step 5

During the lab session on November 29, demonstrate the TestMine program.

Step 6

Write a lab report that includes the following:

(1) A copy of the Lab Exercise 6 Marking Scheme (which is available on
the course Web site) stapled to the front of your report.

1



(2) A copy of the Trees modules.

(3) A copy of your TestTreesExt module and a brief explanation of its
design.

(4) A copy of your TreesExt module and a brief explanation of its design.

(5) The results of the test of your TreesExt module.

(6) A discussion of the test results and what you learned doing the lab
exercise.

(7) A discussion of any problems you found with the MIS.

(8) A copy of the part of your log book relevant to this lab exercise.

The lab report must be given to the instructor no later than December 6.

Input/Output MIS for a Definition Extension of Trees

• Imported modules: Trees.

• Interface:

INTERFACE TreesExt;
PROCEDURE Width(t: Tree): INTEGER;
PROCEDURE Zeroize(t: Tree): Tree;
PROCEDURE Mirror(t: Tree): Tree;
PROCEDURE Compose(t1,t2: Tree): Tree;

END TreesExt.

• Exceptions: none required.

• Informal axioms:

– For all t : Tree, Width(t) is the number of leaves in t.

– For all t : Tree, Zeroize(t) is a copy of t in which the integers of
the leaves in t have been changed to 0.

– For all t : Tree, Mirror(t) is the “mirror” of t.

– For all t1, t2 : Tree, Compose(t1, t2) is the tree obtained by re-
placing each leaf in t1 with t2.

2


