SE 2A04 Fall 2002

Lab Exercise 6

Instructor: William M. Farmer

Assigned: 22 November 2002
Demonstration due: 29 November 2002
Lab report due: 06 December 2002

The purpose of this lab exercise is to implement using recursion a definitional
extension of the Trees module.

Step 1

Write a copy of the Oberon-2 module named Trees presented in the lectures.

Step 2

Write an Oberon-2 module named TestTreesExt that “black box” tests any
module named TreesExt implementing the MIS given below.

Step 3

Write an Oberon-2 module named TreesExt that implements the MIS given
below. Your implementation is required to implement each procedure of the
interface using recursion.

Step 4

Construct an Oberon-2 program named TestMine that uses your TestTreesExt
module to test your TreesExt module.

Step 5

During the lab session on November 29, demonstrate the TestMine program.

Step 6
Write a lab report that includes the following:

(1) A copy of the Lab Exercise 6 Marking Scheme (which is available on
the course Web site) stapled to the front of your report.



(2) A copy of the Trees modules.

(3) A copy of your TestTreesExt module and a brief explanation of its
design.

(4) A copy of your TreesExt module and a brief explanation of its design.
(5) The results of the test of your TreesExt module.

(6) A discussion of the test results and what you learned doing the lab
exercise.

(7) A discussion of any problems you found with the MIS.
(8) A copy of the part of your log book relevant to this lab exercise.

The lab report must be given to the instructor no later than December 6.

Input/Output MIS for a Definition Extension of Trees

e Imported modules: Trees.

e Interface:

INTERFACE TreesExt;
PROCEDURE Width(t: Tree): INTEGER;
PROCEDURE Zeroize(t: Tree): Tree;
PROCEDURE Mirror(t: Tree): Tree;
PROCEDURE Compose(tl,t2: Tree): Tree;
END TreesExt.

e Exceptions: none required.

e Informal axioms:

— For all ¢ : Tree, Width(t) is the number of leaves in ¢.

For all ¢t : Tree, Zeroize(t) is a copy of t in which the integers of
the leaves in ¢ have been changed to 0.

For all t : Tree, Mirror(t) is the “mirror” of ¢t.

— For all t1,t9 : Tree, Compose(t1,ts) is the tree obtained by re-
placing each leaf in t; with t,.



