
SE 2A04 Fall 2002

01 Fundamental
Programming Concepts

Instructor: W. M. Farmer

Revised: 6 September 2002

1



What is a Program?

• A program is most often viewed as a sequence of

instructions for a machine

– An understanding of a program requires an

understanding of the machine

• A machine language program is a sequence of

instructions for a physical machine

– Usually represented as a sequence of 0s and 1s

– Not intelligible to humans

• A high-level language program can be viewed as a

sequence of instructions for a high-level abstract machine

– Easier to understand because the machine is simpler

– Ultimately executed on a physical machine via

interpretation or compilation

2



Other Ways of Viewing Programs

? • As a small abstract machine

– Good because the machine can be simple

• As a function that maps inputs to outputs

– Good if the program has no side-effects

• As an expression in a formal language

– The syntax of the expression is the program

– The semantics of the expression is the behavior of

the program

– Good if the language is well behaved

• As a constructive proof of an existential formula

– Very impractical with today’s technology

3



Ways of Classifying Programs

• Sequential vs. concurrent

• Terminating vs. nonterminating

• Subject-invoked vs. event-triggered

• Applicative vs. systemic

SE 2A04 focuses on programs that are sequential,

terminating, subject-invoked, and applicative

4



Programming Languages

• Programming languages are intended to facilitate

program implementation but not necessarily program

design

• There are many kinds of programming languages

– Imperative (Examples: Pascal, C, Basic, Fortran)

– Object-oriented (Examples: Smalltalk, C++, Java)

– Higher-order languages (Examples: Lisp, Scheme, ML)

– Functional (Examples: ML, Haskell)

– Logical (Examples: Prolog)

• Oberon is an imperative language with some elements of

object-oriented and higher-order languages

• The design of a program should be tied to a specific

programming language as little as possible

5



Components of a Powerful Language

1. Primitive expressions

2. Means of combination

• Compound expressions are built from simpler ones

via constructors

• The expressions denote combinations of objects

3. Means of abstraction

• Compound expressions are built from simpler ones

via constructors

• The expressions denote new objects

Taken from Abelson, Sussman, and Sussman, Structure and

Interpretation of Computer Programs (see references)

6



Example: Oberon

• Primitive expressions:

– Characters, numbers, identifiers

– Basic types

– Basic operators and system-supplied procedures

• Means of combination:

– Expression formation

– Procedure call

– Assignment (:=)

– Composition (;)

– Conditional selection (IF, CASE)

– Iteration (WHILE, REPEAT, LOOP,FOR)

• Means of abstraction:

– Type declarations

– Variable and constant declarations

– Module and procedure declarations
7



Example: Lambda Notation

• Lambda notation is used in many languages to express

ideas about functions

– Lambda Calculus (a model of computability)

– Simple Type Theory (a higher-order predicate logic)

• Primitive expressions: variable and constant symbols for

denoting primitive functions and individuals

• Means of combination: function application f(a)

• Means of abstraction: function abstraction (λ x . s[x])

• Conversion rules

– Alpha: (λ x . s[x]) = (λ y . s[y]) (with no variable captures)

– Beta: (λ x . s[x])(t) = s[t] (with no variable captures)

8



Data Structures

• A data structure is a structured collection of values

– Values include booleans, characters, integers, and

floating-point numbers (atomic values)

– Values may also include some data structures

(compound values)

• Various operators are associated with each kind of data

structure:

– Constructors for creating data structures

– Selectors for retrieving the values in data structures

– Mutators for modifying the values in data structures

• Some data structures do not have mutators

9



Data Structure Example: Pair

• Constructor: pair(a,b) creates a “pair” from two values

a and b

• Selectors:

– first(p) returns the first value of the pair p

– second(p) returns the second value of the pair p

• Mutators:

– set-first(p,x) sets the first value of the pair p to the

value x

– set-second(p,x) sets the second value of a pair p to

the value x

10



Types

• A type is a syntactic object t that denotes a set s of

values

– t and s are often confused with each other

• Types are used in a variety of ways:

– To classify values (latent types)

– To classify variables (manifest types)

– To control the formation of expressions

– To classify expressions by value

• Types are also used as “mini-specifications”

11



Type Examples

• Mathematical types:

– Z: denotes the set of integers

– R: denotes the set of real numbers

– Z→ R: denotes the set of functions from the integers

to the real numbers

• Oberon types

– INTEGER: set of machine integers between -32768 and

32767

– REAL: set of floating point numbers between -3.4E+38

and 3.4E+38

– ARRAY OF CHAR: set of arrays holding characters, i.e.,

members of the Oberon type CHAR

12



Variables

• The meaning of “variable” is different in logic,
control theory, and programming

• In logic, a variable is a symbol that denotes an
unspecified value

• In control theory, a variable is a changing value that is
a component of the state of a system

– A monitored variable is a variable the system can
observe but not change

– A controlled variable is a variable the system can
both observe and change

• In programming, a variable is a data structure composed
of a single value and with the following attributes:

– Name: An identifier bound to the variable

– Value: The single value stored in the variable

– Type: The type of the values that can be stored
13



Oberon Variables

• A variable declaration such as

VAR sum: INTEGER;

serves as the constructor for a variable

– sum is the name of the variable

– INTEGER is the type of the variable

– The value of the variable is initially empty

• The name of a variable (e.g., sum) serves as the selector

for a variable

• An assignment statement such as

sum := 17;

serves as the mutator for a variable

14



Binding vs. Assignment

• Binding associates an identifier with a value

– An identifier i bound to a value v means that i is a

name for v

– Several identifiers can be bound to the same value

– Binding does not modify data structures

• Assignment changes a value in a data structure

• An Oberon variable declaration binds an identifier to a

variable, while an Oberon assignment statement changes

the value of a variable

15



Constants

• The meaning of “constant” is different in logic,

control theory, and programming

• In logic, a constant is a symbol that denotes a

specified value

• In control theory, a constant is an unchanging value

• In programming, a constant is a variable without

mutators

– The use of constants is essential for code readability

and software maintenance

16



Oberon Constants

• A constant declaration such as

CONST pi = 3.14;

serves as the constructor for a constant

– pi is the name of the constant

– 3.14 is the value of the constant

– The type of the constant is the type of 3.14, i.e., REAL

• The name of a constant (e.g., pi) serves as the selector

for a constant

• The value of a constant cannot be changed (at run time):

there is no mutator for a constant

17



Scope

• The scope of an identifier i bound to a value v is the
region of program code in which the binding is effective

– The scope is usually the region of code from the place
where i was first bound to the end of the smallest
enclosing “block” of code

– An identifier i is only visible in its scope, i.e., outside
of its scope i will normally not be bound to v

• If i is rebound within its scope, a new scope of i is created
in which the old binding is not visible

• In Oberon, module and procedure declarations serve as
blocks

• In accordance with the Principle of Least Privilege, the
scope of a variable name should be as narrow as possible

18



Persistence

• The persistence of a data structure (e.g., a variable) is

the period of time the data structure is available to a

running program

• Examples:

– The persistence of a running function procedure begins

when it is called and ends when it returns a value

– The persistence of a variable declared in a procedure

normally has the same persistence as the procedure

– The persistence of an Oberon module is normally from

when it is first imported to the termination of the

program

19



Argument Passing Conventions

The most common conventions for passing arguments to
procedures are:

• Call-by-name: the argument is passed without being
evaluated

– Arguments to macros are usually passed this way

• Call-by-value: the value of the argument is passed

– If the argument is a name of a variable x, assignments
to its corresponding formal parameter have no effect
effect on x

• Call-by-reference when the argument is a name of a
variable x, the corresponding formal parameter of the
procedure is also bound to x

– Assignments to the formal parameter are effectively
assignments to x

20



Argument Passing in Oberon

• The variables declared in a procedure heading are called

the formal parameters of the procedure

• The arguments passed to the formal parameters in a

procedure call are called the actual parameters of the

procedure call

• Oberon procedures can have two kinds of formal

parameters:

– A value parameter is passed an argument using

call-by-value

– A variable parameter is passed an argument using

call-by-reference

• A value parameter or variable parameter is indicated by

the absence or presence of the keyword VAR, respectively

21



A Simple Pseudocode (ASP) 1

Declarations:

1. Type: type <typename> = <typeexpr>

2. Variable: var <varname> : <typeexpr>

3. Constant: const <constname> : <typeexpr> = <expr>

4. Procedure:

proc <procname>(vardecllist) : <typeexpr>

<statement>

end

22



A Simple Pseudocode (ASP) 2

Statements:

1. Declaration: <typedecl>, <vardecl>, <constdecl>, or

<procdecl>

2. Procedure call: <procname>(<exprlist>)

3. Return: return <expr>

4. Assignment: <varname> := <expr>

5. Composition: <statement> ; <statement>

23



A Simple Pseudocode (ASP) 3

6. Conditional selection:

case

(<expr> , <statement>),

.

.

.

(<expr> , <statement>)

end

7. Iteration:

loop

<condition>,

<statement>

end

24



Backus-Naur Form (BNF)

• The Backus-Naur Form (BNF) is a formal metasyntax

used to describe the syntax of a context-free language

• A line of BNF syntax has the form

<meta-variable-name> ::= bnf-expression

where bnf-expression is build from metavariables; the meta-

symbols |, [, and ]; and the symbols of the language

– | means disjunction

– [bnf-expression] means bnf-expression is optional

• There are many variations of BNF including Extended

BNF (EBNF) with the additional metasymbols *, +, {,

and }

25


