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What is a Program?

• A program is most often viewed as a sequence of

instructions for a machine

– An understanding of a program requires an

understanding of the machine

• A machine language program is a sequence of

instructions for a physical machine

– Usually represented as a sequence of 0s and 1s

– Not intelligible to humans

• A high-level language program can be viewed as a

sequence of instructions for a high-level abstract machine

– Easier to understand because the machine is simpler

– Ultimately executed on a physical machine via

interpretation or compilation
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Other Ways of Viewing Programs

? • As a small abstract machine

– Good because the machine can be simple

• As a function that maps inputs to outputs

– Good if the program has no side-effects

• As an expression in a formal language

– The syntax of the expression is the program

– The semantics of the expression is the behavior of

the program

– Good if the language is well behaved

• As a constructive proof of an existential formula

– Very impractical with today’s technology
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Ways of Classifying Programs

• Sequential vs. concurrent

• Terminating vs. nonterminating

• Subject-invoked vs. event-triggered

• Applicative vs. systemic

SE 2A04 focuses on programs that are sequential,

terminating, subject-invoked, and applicative

4



Programming Languages

• Programming languages are intended to facilitate

program implementation but not necessarily program

design

• There are many kinds of programming languages

– Imperative (Examples: Pascal, C, Basic, Fortran)

– Object-oriented (Examples: Smalltalk, C++, Java)

– Higher-order languages (Examples: Lisp, Scheme, ML)

– Functional (Examples: ML, Haskell)

– Logical (Examples: Prolog)

• Oberon is an imperative language with some elements of

object-oriented and higher-order languages

• The design of a program should be tied to a specific

programming language as little as possible
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Components of a Powerful Language

1. Primitive expressions

2. Means of combination

• Compound expressions are built from simpler ones

via constructors

• The expressions denote combinations of objects

3. Means of abstraction

• Compound expressions are built from simpler ones

via constructors

• The expressions denote new objects

Taken from Abelson, Sussman, and Sussman, Structure and

Interpretation of Computer Programs (see references)
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Example: Oberon

• Primitive expressions:

– Characters, numbers, identifiers

– Basic types

– Basic operators and system-supplied procedures

• Means of combination:

– Expression formation

– Procedure call

– Assignment (:=)

– Composition (;)

– Conditional selection (IF, CASE)

– Iteration (WHILE, REPEAT, LOOP,FOR)

• Means of abstraction:

– Type declarations

– Variable and constant declarations

– Module and procedure declarations
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Example: Lambda Notation

• Lambda notation is used in many languages to express

ideas about functions

– Lambda Calculus (a model of computability)

– Simple Type Theory (a higher-order predicate logic)

• Primitive expressions: variable and constant symbols for

denoting primitive functions and individuals

• Means of combination: function application f(a)

• Means of abstraction: function abstraction (λ x . s[x])

• Conversion rules

– Alpha: (λ x . s[x]) = (λ y . s[y]) (with no variable captures)

– Beta: (λ x . s[x])(t) = s[t] (with no variable captures)

8



Data Structures

• A data structure is a structured collection of values

– Values include booleans, characters, integers, and

floating-point numbers (atomic values)

– Values may also include some data structures

(compound values)

• Various operators are associated with each kind of data

structure:

– Constructors for creating data structures

– Selectors for retrieving the values in data structures

– Mutators for modifying the values in data structures

• Some data structures do not have mutators
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Data Structure Example: Pair

• Constructor: pair(a,b) creates a “pair” from two values

a and b

• Selectors:

– first(p) returns the first value of the pair p

– second(p) returns the second value of the pair p

• Mutators:

– set-first(p,x) sets the first value of the pair p to the

value x

– set-second(p,x) sets the second value of a pair p to

the value x

10



Types

• A type is a syntactic object t that denotes a set s of

values

– t and s are often confused with each other

• Types are used in a variety of ways:

– To classify values (latent types)

– To classify variables (manifest types)

– To control the formation of expressions

– To classify expressions by value

• Types are also used as “mini-specifications”
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Type Examples

• Mathematical types:

– Z: denotes the set of integers

– R: denotes the set of real numbers

– Z→ R: denotes the set of functions from the integers

to the real numbers

• Oberon types

– INTEGER: set of machine integers between -32768 and

32767

– REAL: set of floating point numbers between -3.4E+38

and 3.4E+38

– ARRAY OF CHAR: set of arrays holding characters, i.e.,

members of the Oberon type CHAR
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Variables

• The meaning of “variable” is different in logic,
control theory, and programming

• In logic, a variable is a symbol that denotes an
unspecified value

• In control theory, a variable is a changing value that is
a component of the state of a system

– A monitored variable is a variable the system can
observe but not change

– A controlled variable is a variable the system can
both observe and change

• In programming, a variable is a data structure composed
of a single value and with the following attributes:

– Name: An identifier bound to the variable

– Value: The single value stored in the variable

– Type: The type of the values that can be stored
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Oberon Variables

• A variable declaration such as

VAR sum: INTEGER;

serves as the constructor for a variable

– sum is the name of the variable

– INTEGER is the type of the variable

– The value of the variable is initially empty

• The name of a variable (e.g., sum) serves as the selector

for a variable

• An assignment statement such as

sum := 17;

serves as the mutator for a variable
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Binding vs. Assignment

• Binding associates an identifier with a value

– An identifier i bound to a value v means that i is a

name for v

– Several identifiers can be bound to the same value

– Binding does not modify data structures

• Assignment changes a value in a data structure

• An Oberon variable declaration binds an identifier to a

variable, while an Oberon assignment statement changes

the value of a variable
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Constants

• The meaning of “constant” is different in logic,

control theory, and programming

• In logic, a constant is a symbol that denotes a

specified value

• In control theory, a constant is an unchanging value

• In programming, a constant is a variable without

mutators

– The use of constants is essential for code readability

and software maintenance
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Oberon Constants

• A constant declaration such as

CONST pi = 3.14;

serves as the constructor for a constant

– pi is the name of the constant

– 3.14 is the value of the constant

– The type of the constant is the type of 3.14, i.e., REAL

• The name of a constant (e.g., pi) serves as the selector

for a constant

• The value of a constant cannot be changed (at run time):

there is no mutator for a constant
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Scope

• The scope of an identifier i bound to a value v is the
region of program code in which the binding is effective

– The scope is usually the region of code from the place
where i was first bound to the end of the smallest
enclosing “block” of code

– An identifier i is only visible in its scope, i.e., outside
of its scope i will normally not be bound to v

• If i is rebound within its scope, a new scope of i is created
in which the old binding is not visible

• In Oberon, module and procedure declarations serve as
blocks

• In accordance with the Principle of Least Privilege, the
scope of a variable name should be as narrow as possible
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Persistence

• The persistence of a data structure (e.g., a variable) is

the period of time the data structure is available to a

running program

• Examples:

– The persistence of a running function procedure begins

when it is called and ends when it returns a value

– The persistence of a variable declared in a procedure

normally has the same persistence as the procedure

– The persistence of an Oberon module is normally from

when it is first imported to the termination of the

program
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Argument Passing Conventions

The most common conventions for passing arguments to
procedures are:

• Call-by-name: the argument is passed without being
evaluated

– Arguments to macros are usually passed this way

• Call-by-value: the value of the argument is passed

– If the argument is a name of a variable x, assignments
to its corresponding formal parameter have no effect
effect on x

• Call-by-reference when the argument is a name of a
variable x, the corresponding formal parameter of the
procedure is also bound to x

– Assignments to the formal parameter are effectively
assignments to x
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Argument Passing in Oberon

• The variables declared in a procedure heading are called

the formal parameters of the procedure

• The arguments passed to the formal parameters in a

procedure call are called the actual parameters of the

procedure call

• Oberon procedures can have two kinds of formal

parameters:

– A value parameter is passed an argument using

call-by-value

– A variable parameter is passed an argument using

call-by-reference

• A value parameter or variable parameter is indicated by

the absence or presence of the keyword VAR, respectively
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A Simple Pseudocode (ASP) 1

Declarations:

1. Type: type <typename> = <typeexpr>

2. Variable: var <varname> : <typeexpr>

3. Constant: const <constname> : <typeexpr> = <expr>

4. Procedure:

proc <procname>(vardecllist) : <typeexpr>

<statement>

end
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A Simple Pseudocode (ASP) 2

Statements:

1. Declaration: <typedecl>, <vardecl>, <constdecl>, or

<procdecl>

2. Procedure call: <procname>(<exprlist>)

3. Return: return <expr>

4. Assignment: <varname> := <expr>

5. Composition: <statement> ; <statement>
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A Simple Pseudocode (ASP) 3

6. Conditional selection:

case

(<expr> , <statement>),

.

.

.

(<expr> , <statement>)

end

7. Iteration:

loop

<condition>,

<statement>

end
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Backus-Naur Form (BNF)

• The Backus-Naur Form (BNF) is a formal metasyntax

used to describe the syntax of a context-free language

• A line of BNF syntax has the form

<meta-variable-name> ::= bnf-expression

where bnf-expression is build from metavariables; the meta-

symbols |, [, and ]; and the symbols of the language

– | means disjunction

– [bnf-expression] means bnf-expression is optional

• There are many variations of BNF including Extended

BNF (EBNF) with the additional metasymbols *, +, {,

and }
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