SE 2A04 Fall 2002

02 Software Modules

Instructor: W. M. Farmer

Revised: 03 October 2002

What is a Software Module?

e Modules are relatively self-contained systems that can be
combined to make large systems (Parnas)

e Design is often the assembly of many previously designed
modules (Parnas)

— Modules are interconnectable and interchangeable parts

— Modules can be designed, implemented, tested, and
changed independently

e A software module is a cohesive collection of data and
procedures that provides a set of services to other
modules

— Programs and procedures are usually not modules
— Modules usually have state

Components of a Module
A software module has two components:

1. An interface that allows other modules to use the
services the module provides

e T he interface is a language for requesting the services

e Most of the primitive components of the language
are procedures called interface procedures, interface
functions, or access functions

2. An implementation of the interface that provides the
services offered by the module

e [he implementation is hidden from other modules

e T he interface procedures are implemented together
and may share data structures

e [he implementation may utilize the services offered by
other modules

Examples of Modules

e An object

— Consists of data (fields) and procedures (methods)
— Has state and behavior

e An abstract data structure

e An abstract data type (ADT)

Structure of an Oberon Module

e Interface:

— EXxported type declarations

— EXxported constant declarations

— Exported variable declarations (not recommended)
— Exported procedure declarations

e Implementation:

— Exported and local types

— Exported and local constants
— Exported and local variables
— Exported and local procedures

— EXxported types, constants, variables, and procedures
of the imported modules

An Example Interface

An Oberon interface for a stack module:

INTERFACE Stack;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
END Stack.

Reset () ;

MaxHeight () : INTEGER;
Height () : INTEGER;
Empty () : BOOLEAN;
Full(): BOOLEAN;
Push(i: INTEGER);
Pop() ;

Top() : INTEGER;

Example: Stack as Array (1)

(%
Title: Stack as Array
Interface:

INTERFACE Stack;
PROCEDURE Reset();
PROCEDURE MaxHeight(): INTEGER;
PROCEDURE Height(): INTEGER;
PROCEDURE Empty(): BOOLEAN;
PROCEDURE Full(): BOOLEAN;
PROCEDURE Push(i: INTEGER);
PROCEDURE Pop() ;
PROCEDURE Top(): INTEGER;

END Stack.

*)
MODULE Stack;

IMPORT OQOut;

Example: Stack as Array (2)

(* Constants and variables x*)
CONST max = 1000; (* maximum height *)

VAR h : INTEGER; (* height of stack *)
s : ARRAY max OF INTEGER; (* stack contents *)

(x Exceptions: *)

PROCEDURE EmptyStackException() ;

BEGIN
Out.String("Stack.EmptyStackException: The stack is empty.");

HALT(1) (* Abort program *)
END EmptyStackException;

PROCEDURE FullStackException();

BEGIN
Out.String("Stack.FullStackException: The stack is full.");

HALT(1) (* Abort program *)
END FullStackException;

Example: Stack as

(* Interface procedures x*)

PROCEDURE Reset*();
BEGIN

h :=0
END Reset;

PROCEDURE MaxHeight*(): INTEGER;
BEGIN

RETURN max
END MaxHeight;

PROCEDURE Height*(): INTEGER;
BEGIN

RETURN h
END Height;

PROCEDURE Empty*(): BOOLEAN;
BEGIN

RETURN Height() = 0
END Empty;

Array (3)

Example: Stack as

PROCEDURE Full*(): BOOLEAN;
BEGIN

RETURN Height() = MaxHeight ()
END Full;

PROCEDURE Push*(i: INTEGER) ;
BEGIN
IF “Full() THEN
s[h] := i;
h :=h+1
ELSE
FullStackException()
END
END Push;

PROCEDURE Pop*();

BEGIN
IF “Empty() THEN
h :=h -1
ELSE

EmptyStackException()
END
END Pop;

Array (4)

10

Example: Stack as Array (5)

PROCEDURE Top*(): INTEGER;
BEGIN
IF “Empty() THEN
RETURN s[h - 1]
ELSE
EmptyStackException()
END
END Top;

(x Initialization *)

BEGIN
Reset ()
END Stack.

11

Example: Stack as Linked List (1)

(*
Title: Stack as Linked List
Interface:

INTERFACE Stack;
PROCEDURE Reset();
PROCEDURE MaxHeight(): INTEGER;
PROCEDURE Height(): INTEGER;
PROCEDURE Empty(): BOOLEAN;
PROCEDURE Full(): BOOLEAN;
PROCEDURE Push(i: INTEGER);
PROCEDURE Pop() ;
PROCEDURE Top(): INTEGER;

END Stack.

*)
MODULE Stack;

IMPORT OQOut;

Example: Stack as Linked List (2)

(x Types *)
TYPE

Stack = POINTER TO StackRec;

StackRec =
RECORD
item: INTEGER;
rest: Stack
END;

(* Constants and variables x*)

CONST max = 1000; (* maximum height of stack *)

VAR h: INTEGER; (* height of stack *)
s: Stack; (x start of stack list *)

13

Example: Stack as Linked List (3)

(x Exceptions: *)

PROCEDURE EmptyStackException() ;

BEGIN
Out.String("Stack.EmptyStackException: The stack is empty.");
HALT(1) (* Abort program *)

END EmptyStackException;

PROCEDURE FullStackException() ;

BEGIN
Out.String("Stack.FullStackException: The stack is full.");
HALT(1) (* Abort program *)

END FullStackException;

(* Interface procedures x*)

PROCEDURE Reset* () ;
BEGIN

s := NIL;

h :=0
END Reset;

14

Example: Stack as Linked

PROCEDURE MaxHeight*(): INTEGER;
BEGIN

RETURN max
END MaxHeight;

PROCEDURE Height*(): INTEGER;
BEGIN

RETURN h
END Height;

PROCEDURE Empty*(): BOOLEAN;
BEGIN

RETURN Height() = 0
END Empty;

PROCEDURE Full*(): BOOLEAN;
BEGIN

RETURN Height() = MaxHeight ()
END Full;

List (4)

15

Example: Stack as Linked List (5)

PROCEDURE Pushx*(i: INTEGER);
VAR t: Stack;
BEGIN
IF “Full() THEN
NEW(t) ;
t7.item := 1i;
t".rest := s;
s := t;
h :=h + 1
ELSE
FullStackException()
END
END Push;

PROCEDURE Pop*();

BEGIN
IF “Empty() THEN
s := s".rest;
h :=h-1
ELSE
EmptyStackException()
END
END Pop;

16

Example: Stack as

PROCEDURE Top*(): INTEGER;
BEGIN
IF “Empty() THEN
RETURN s~ .item
ELSE
EmptyStackException()
END
END Top;

(x Initialization *)

BEGIN
Reset ()
END Stack.

Linked List (6)

17

The Principles of Modular Design (1)

1. Separation of Concerns

e Different parts of the problem are handled by different
modules (horizontal decomposition)

e What (i.e., interface) is separated from how (i.e.,
implementation) (vertical decomposition)

2. Abstraction

e Key ideas unlikely to change are expressed in the
interface

e Implementation details likely to change are left out of
the interface

18

The Principles of Modular Design (2)

3. Information Hiding

e Design decisions likely to change are hidden from other
modules (design for change)

e Each module’'s implementation is a “secret” (Parnas)

4. Little Languages Method

e [heinterface is designed as a language that can solve
a family of problems instead of just a single problem

e More abstract languages are defined in terms of more
concrete languages

19

Hallmarks of a Good Module

e [he module is as independent from other modules as
possible

e [he interface is small and orthogonal
e [he interface language is highly expressive
e Implementation details are hidden from other modules

e [he data structures of the implementation are accessible
only via the interface procedures

20

Definitional Extensions

e A module M’ is an definitional extension of a module
M if:
1. M’ imports only M and possibly some other modules
that provide basic services like input and output
2. M’ does not have a state

3. The interface components of M’ are defined in terms
of the interface components of M

e The interface language of M’ is intended to be an
enrichment of the interface language of M

e Unlike other modules, the interface of a good
definitional extension can be large and nonorthogonal

21

