
SE 2A04 Fall 2002

02 Software Modules

Instructor: W. M. Farmer

Revised: 03 October 2002

1



What is a Software Module?

• Modules are relatively self-contained systems that can be

combined to make large systems (Parnas)

• Design is often the assembly of many previously designed

modules (Parnas)

– Modules are interconnectable and interchangeable parts

– Modules can be designed, implemented, tested, and

changed independently

• A software module is a cohesive collection of data and

procedures that provides a set of services to other

modules

– Programs and procedures are usually not modules

– Modules usually have state

2



Components of a Module

A software module has two components:

1. An interface that allows other modules to use the

services the module provides

• The interface is a language for requesting the services

• Most of the primitive components of the language

are procedures called interface procedures, interface

functions, or access functions

2. An implementation of the interface that provides the

services offered by the module

• The implementation is hidden from other modules

• The interface procedures are implemented together

and may share data structures

• The implementation may utilize the services offered by

other modules
3



Examples of Modules

• An object

– Consists of data (fields) and procedures (methods)

– Has state and behavior

• An abstract data structure

• An abstract data type (ADT)

4



Structure of an Oberon Module

• Interface:

– Exported type declarations

– Exported constant declarations

– Exported variable declarations (not recommended)

– Exported procedure declarations

• Implementation:

– Exported and local types

– Exported and local constants

– Exported and local variables

– Exported and local procedures

– Exported types, constants, variables, and procedures

of the imported modules

5



An Example Interface

An Oberon interface for a stack module:

INTERFACE Stack;

PROCEDURE Reset();

PROCEDURE MaxHeight(): INTEGER;

PROCEDURE Height(): INTEGER;

PROCEDURE Empty(): BOOLEAN;

PROCEDURE Full(): BOOLEAN;

PROCEDURE Push(i: INTEGER);

PROCEDURE Pop();

PROCEDURE Top(): INTEGER;

END Stack.

6



Example: Stack as Array (1)

(*

Title: Stack as Array

Interface:

INTERFACE Stack;
PROCEDURE Reset();
PROCEDURE MaxHeight(): INTEGER;
PROCEDURE Height(): INTEGER;
PROCEDURE Empty(): BOOLEAN;
PROCEDURE Full(): BOOLEAN;
PROCEDURE Push(i: INTEGER);
PROCEDURE Pop();
PROCEDURE Top(): INTEGER;

END Stack.

*)

MODULE Stack;

IMPORT Out;

7



Example: Stack as Array (2)

(* Constants and variables *)

CONST max = 1000; (* maximum height *)

VAR h : INTEGER; (* height of stack *)
s : ARRAY max OF INTEGER; (* stack contents *)

(* Exceptions: *)

PROCEDURE EmptyStackException();
BEGIN

Out.String("Stack.EmptyStackException: The stack is empty.");
HALT(1) (* Abort program *)

END EmptyStackException;

PROCEDURE FullStackException();
BEGIN

Out.String("Stack.FullStackException: The stack is full.");
HALT(1) (* Abort program *)

END FullStackException;

8



Example: Stack as Array (3)

(* Interface procedures *)

PROCEDURE Reset*();
BEGIN

h := 0
END Reset;

PROCEDURE MaxHeight*(): INTEGER;
BEGIN

RETURN max
END MaxHeight;

PROCEDURE Height*(): INTEGER;
BEGIN

RETURN h
END Height;

PROCEDURE Empty*(): BOOLEAN;
BEGIN

RETURN Height() = 0
END Empty;

9



Example: Stack as Array (4)

PROCEDURE Full*(): BOOLEAN;
BEGIN

RETURN Height() = MaxHeight()
END Full;

PROCEDURE Push*(i: INTEGER);
BEGIN

IF ~Full() THEN
s[h] := i;
h := h + 1

ELSE
FullStackException()

END
END Push;

PROCEDURE Pop*();
BEGIN

IF ~Empty() THEN
h := h - 1

ELSE
EmptyStackException()

END
END Pop;

10



Example: Stack as Array (5)

PROCEDURE Top*(): INTEGER;
BEGIN

IF ~Empty() THEN
RETURN s[h - 1]

ELSE
EmptyStackException()

END
END Top;

(* Initialization *)

BEGIN
Reset()

END Stack.

11



Example: Stack as Linked List (1)

(*

Title: Stack as Linked List

Interface:

INTERFACE Stack;
PROCEDURE Reset();
PROCEDURE MaxHeight(): INTEGER;
PROCEDURE Height(): INTEGER;
PROCEDURE Empty(): BOOLEAN;
PROCEDURE Full(): BOOLEAN;
PROCEDURE Push(i: INTEGER);
PROCEDURE Pop();
PROCEDURE Top(): INTEGER;

END Stack.

*)

MODULE Stack;

IMPORT Out;

12



Example: Stack as Linked List (2)

(* Types *)

TYPE

Stack = POINTER TO StackRec;

StackRec =
RECORD

item: INTEGER;
rest: Stack

END;

(* Constants and variables *)

CONST max = 1000; (* maximum height of stack *)

VAR h: INTEGER; (* height of stack *)
s: Stack; (* start of stack list *)

13



Example: Stack as Linked List (3)

(* Exceptions: *)

PROCEDURE EmptyStackException();
BEGIN

Out.String("Stack.EmptyStackException: The stack is empty.");
HALT(1) (* Abort program *)

END EmptyStackException;

PROCEDURE FullStackException();
BEGIN

Out.String("Stack.FullStackException: The stack is full.");
HALT(1) (* Abort program *)

END FullStackException;

(* Interface procedures *)

PROCEDURE Reset*();
BEGIN

s := NIL;
h := 0

END Reset;

14



Example: Stack as Linked List (4)

PROCEDURE MaxHeight*(): INTEGER;
BEGIN

RETURN max
END MaxHeight;

PROCEDURE Height*(): INTEGER;
BEGIN

RETURN h
END Height;

PROCEDURE Empty*(): BOOLEAN;
BEGIN

RETURN Height() = 0
END Empty;

PROCEDURE Full*(): BOOLEAN;
BEGIN

RETURN Height() = MaxHeight()
END Full;

15



Example: Stack as Linked List (5)

PROCEDURE Push*(i: INTEGER);
VAR t: Stack;
BEGIN

IF ~Full() THEN
NEW(t);
t^.item := i;
t^.rest := s;
s := t;
h := h + 1

ELSE
FullStackException()

END
END Push;

PROCEDURE Pop*();
BEGIN

IF ~Empty() THEN
s := s^.rest;
h := h - 1

ELSE
EmptyStackException()

END
END Pop;

16



Example: Stack as Linked List (6)

PROCEDURE Top*(): INTEGER;
BEGIN

IF ~Empty() THEN
RETURN s^.item

ELSE
EmptyStackException()

END
END Top;

(* Initialization *)

BEGIN
Reset()

END Stack.

17



The Principles of Modular Design (1)

1. Separation of Concerns

• Different parts of the problem are handled by different

modules (horizontal decomposition)

• What (i.e., interface) is separated from how (i.e.,

implementation) (vertical decomposition)

2. Abstraction

• Key ideas unlikely to change are expressed in the

interface

• Implementation details likely to change are left out of

the interface

18



The Principles of Modular Design (2)

3. Information Hiding

• Design decisions likely to change are hidden from other

modules (design for change)

• Each module’s implementation is a “secret” (Parnas)

4. Little Languages Method

• The interface is designed as a language that can solve

a family of problems instead of just a single problem

• More abstract languages are defined in terms of more

concrete languages

19



Hallmarks of a Good Module

• The module is as independent from other modules as

possible

• The interface is small and orthogonal

• The interface language is highly expressive

• Implementation details are hidden from other modules

• The data structures of the implementation are accessible

only via the interface procedures

20



Definitional Extensions

• A module M ′ is an definitional extension of a module

M if:

1. M ′ imports only M and possibly some other modules

that provide basic services like input and output

2. M ′ does not have a state

3. The interface components of M ′ are defined in terms

of the interface components of M

• The interface language of M ′ is intended to be an

enrichment of the interface language of M

• Unlike other modules, the interface of a good

definitional extension can be large and nonorthogonal

21


