

SE 2A04 Fall 2002

03 Software Specification and Description

Instructor: W. M. Farmer

Revised: 08 November 2002

Descriptions of Engineering Products

- A **description** of a product is a **model** of the product
 - Should include only certain key aspects of the product
 - Should be easier to understand than the product itself
- Mathematics is used to make descriptions precise
- A variety of descriptions, instead of a single description, is used to efficiently describe the different aspects of a product
 - There is never a complete description of a product

Specifications

- A **specification** describes the attributes **required** of a product
- A product **satisfies** a specification if it possesses the attributes described by the specification
- A specification serves three purposes:
 - Blueprint for developing the product
 - Basis for verifying the correctness of the product
 - High-level description of the product

Actual Descriptions

- An **(actual) description** describes the **actual** attributes of a product
- A **constructive description** describes how the product is constructed from other products
 - A program's code is a constructive description
- A **behavioral description** describes how the product works
 - Blackbox: describes the external (visible) behavior
 - Whitebox: describes the internal (invisible) behavior

Specification vs. Description

- Both specifications and descriptions describe attributes, but they are different in intent
 - The same descriptive item may be interpreted as either a specification or a description
- Specifications are often interpreted as abstract descriptions
- Descriptions are often interpreted as concrete specifications

Refinement

- Let S and S' be specifications
- S' is a **refinement** of S if every product that satisfies S' also satisfies S
- The **refinement method** is a powerful design method in which a specification S_0 is to incrementally refined to a specification S_n of a product that is readily implementable

Procedure Specification Methods

1. Input/output specification
2. Before/after specification
 - Input/output specification is a special case
3. Trace specification
4. Pre- and postcondition specification

Note: Specifications methods 1–3 view procedures as certain kinds of functions

Review of Functions

- $f : A \rightarrow B$ means f is a function that maps members of A to members of B
- f can be viewed as a **set of ordered pairs**:
$$\{(x, y) : A \times B \mid y = f(x)\} \subseteq A \times B$$
- f may not be defined for all members of A
 - The **domain** of f is the set $\text{dom}(f) = \{x : A \mid f(x) \downarrow\}$
 - f is **total** if $\text{dom}(f) = A$
 - f is **partial** if $\text{dom}(f) \subseteq A$
 - f is **strictly partial** if $\text{dom}(f) \subset A$
- The function can be specified in various ways:
 - **Definitional specification**: $f = E$
 - **Relational specification**: (R, D)
 - **Axiomatic specification**: $A(f)$

Partiality in Software Specifications

Specifications can be partial in two ways:

1. A specification may **not fully specify** an object or operation
 - What is not specified is considered to be implicitly specified as “don’t care” and can thus be freely implemented
2. A specification may state that the application of an operation in certain states or on certain inputs is **undefined** or **illegal**
 - An undefined application is implemented by an **exception**

Input/output Specifications

- Let I be a set of possible inputs, and O be a set of possible outputs
- A procedure without side-effects can be viewed as a **function $f : I \rightarrow O$ that maps inputs to outputs**

Definitional Specification

- A **definition** specifies a unique object
- So a definition of a function specifies a unique function:
 - Syntax: $f = E$ where E is an expression
 - Semantics: f is the unique function denoted by E
- Example 1: Integer square function $f : \mathbf{Z} \rightarrow \mathbf{Z}$
$$f = \lambda x : \mathbf{Z} . x * x \quad (\text{or } f(x) = x * x)$$
- Example 2: Integer square root function $g : \mathbf{Z} \rightarrow \mathbf{Z}$
$$g = \lambda x : \mathbf{Z} . \text{I} y : \mathbf{Z} . 0 \leq y \wedge y * y = x$$

Notice that g is strictly partial

Relational Specification

- A **relational specification** is a pair (R, D) where:
 1. $R \subseteq I \times O$
 2. $D \subseteq \text{dom}(R) = \{x : I \mid \exists y : O . R(x, y)\} \subseteq I$
- $f : I \rightarrow O$ **satisfies** (R, D) if:
 1. $\forall x : I . x \in \text{dom}(f) \Rightarrow R(x, f(x))$
 2. $D \subseteq \text{dom}(f)$
- Example 1: Integer square function $f : \mathbf{Z} \rightarrow \mathbf{Z}$
$$R = \{(x, y) \in \mathbf{Z} \times \mathbf{Z} \mid y = x * x\}$$
$$D = \mathbf{Z}$$

- Example 2: Integer square root function $g : \mathbf{Z} \rightarrow \mathbf{Z}$
$$R = \{(x, y) \in \mathbf{Z} \times \mathbf{Z} \mid y * y = x\}$$
$$D = \{x \in \mathbf{Z} \mid \exists y : \mathbf{Z} . y * y = x\} \subseteq \{x : \mathbf{Z} \mid 0 \leq x\}$$

Axiomatic Specification

- An **axiomatic specification** is a formula $A(f)$:

- $A(f)$ is an **axiom** for the behavior of f

- $g : I \rightarrow O$ **satisfies** $A(f)$ if $A(g)$ is true

- Example 1: Integer square function $f : \mathbf{Z} \rightarrow \mathbf{Z}$

$$A(f) \Leftrightarrow \forall x : \mathbf{Z} . f(x) = x * x$$

- Example 2: Integer square root function $g : \mathbf{Z} \rightarrow \mathbf{Z}$

$$A(f) \Leftrightarrow \forall x : \mathbf{Z} . \text{if}(\exists y : \mathbf{Z} . y * y = x, \\ f(x) * f(x) = x, \\ f(x) \uparrow)$$

What is a State?

- A state of a machine is an abstract entity that can only be defined indirectly
- A **description of a state** of a machine is a description of all the information needed to predict the machine's future response to input from the external environment
- Physical machines have an infinite number of states, but they can usually be viewed as if they had a finite number of states
 - Aspects of a state which are irrelevant to the behavior of the machine (e.g., temperature and location) can be ignored
 - **Transition states** between **stable states** can also be ignored
- Digital computers are design to behave as if they were finite state machines

State Machines

- A **state machine** M consists of the following components:
 1. A fixed set S of **states** including an **initial state**
 2. A fixed set I of **inputs**
 3. A fixed set O of **outputs**
 4. An **output** relation $\text{out} \subseteq I \times S \times O$
 5. A **next state** relation $\text{ns} \subseteq I \times S \times S$
- M is a **finite state machine** if S is finite
- M is **deterministic** if the relations are functions, i.e., $\text{out} : I \times S \rightarrow O$ and $\text{ns} : I \times S \rightarrow S$

Computing Machines

- A computing machine can be viewed as a finite state machine:
 - The machine can only be in one of finitely many **stable states**
 - An **execution** takes the machine through a **sequence of states**
- A program, module, or procedure can be viewed as a small computing machine, i.e., a finite state machine
 - A state of the machine is the set of variables (data structures) that the program, module, or procedure can modify

Before/After Specifications

- Let I be a set of possible inputs, O be a set of possible outputs, and S be a set of possible states
- A procedure (possibly with side-effects) can be viewed as a **function** $f : I \times S \rightarrow O \times S$ **that maps inputs and before-states to outputs and after-states**
- The function f can be represented as a pair (f_1, f_2) of functions where:
$$f_1 : I \times S \rightarrow O$$
$$f_2 : I \times S \rightarrow S$$
- An input/output function is a special case of a before/after function where the after-state is always the same as the before-state

Before/After Specification Format

Components of a before/after procedure specification:

1. The **name** and **type** of the procedure
2. The **exceptions** that the procedure can raise
 - Represented as predicates
3. **State constants** with value conditions
4. **State variables** with initial values
5. **Behavior rules** (preferably given in a tabular format):
 - Output rules
 - State transition rules
 - Exception rules

Example 1: Counted Integer Square Function

1. counted-int-square : $\mathbf{Z} \rightarrow \mathbf{Z}$
2. Exceptions: none required
3. State constants: none
4. State variables: $c : \mathbf{Z}$ [initially $c = 0$]
5. Behavior rules:

Input $x : \mathbf{Z}$	Output $y : \mathbf{Z}$	State Transition	Exception
$x \in \mathbf{Z}$	$y = x * x$	$c' = c + 1$	

Example 2: Counted Integer Square Root Function

1. counted-int-sqrt : $\mathbb{Z} \rightarrow \mathbb{Z}$
2. Exceptions: sqrt-complex, sqrt-irrational
3. State constants: none
4. State variables: $c : \mathbb{Z}$ [initially $c = 0$]
5. Behavior rules:

Input $x : \mathbb{Z}$	Output $y : \mathbb{Z}$	State Transition	Exception
$x < 0$		$c' = c + 1$	sqrt-complex
$0 \leq x \wedge \neg \exists y : \mathbb{Z} . y * y = x$		$c' = c + 1$	sqrt-irrational
$0 \leq x \wedge \exists y : \mathbb{Z} . y * y = x$	$0 \leq y \wedge y * y = x$	$c' = c + 1$	

Trace Specifications

- Let I be a set of possible inputs, O be a set of possible outputs, S be a set of possible states, and S^* be the set of finite sequences of members of S
- A **trace** is an execution history expressed as a sequence of states
 - A finite trace is a member of S^*
- A procedure (possibly with side-effects) can be viewed as a **function** $f : I \times S^* \rightarrow O \times S^*$ **that maps inputs and before-traces to outputs and after-traces**
- The function f can be represented as a pair (f_1, f_2) of functions where:

$$f_1 : I \times S^* \rightarrow O$$

$$f_2 : I \times S^* \rightarrow S^*$$

Pre- and Postconditions Specification

- A state is specified by a tuple $X = (x_1, \dots, x_n)$ of variables
- A procedure is specified by:
 1. A **precondition** $\varphi(x_1, \dots, x_n)$ on the initial values of the state variables
 2. A **postcondition** $\psi(x_1, \dots, x_n; x'_1, \dots, x'_n)$ on the initial and final values of the state variables
- A procedure **satisfies** the specification if, for all states $X = (x_1, \dots, x_n)$, whenever

$$\varphi(x_1, \dots, x_n)$$

holds, the procedure is started in state X , and the procedure terminates in state $X' = (x'_1, \dots, x'_n)$, then

$$\psi(x_1, \dots, x_n; x'_1, \dots, x'_n)$$

holds.

Partial vs. Total Correctness

- A procedure P is **partially correct** with respect to a pre- and postcondition specification $S = (\varphi, \psi)$ if P satisfies S
- A procedure P is **totally correct** with respect to a pre- and postcondition specification $S = (\varphi, \psi)$ if both:
 - P satisfies S
 - P terminates whenever it is started in a state for which the precondition φ holds

Module Design Documents

- **Module Guide**
- For each module:
 - **Module Interface Specification (MIS)**
 - **Module Internal Design (MID)**

Module Guide

- The Module Guide lists all the modules of the software product
- The following information is given for each module:
 1. Module name
 2. Module nickname (2 or 3 letters)
 3. Service: Short informal description of what services the module provides
 4. Secret: Short informal description of what secret the module hides
 5. Expected changes: A short description of expected implementation changes

Components of an Axiomatic Input/Output MIS

1. Imported modules

2. Interface

- Types
- Constant names and types
- Procedure names and types

3. Exceptions

4. Axioms

Example: Axiomatic Input/Output MIS For Stacks ADT (1)

- Imported modules: none required

- Interface:

```
INTERFACE Stacks;  
  TYPE Stack;  
  CONST Bottom: Stack;  
  PROCEDURE Push(i: INTEGER; s: Stack): Stack;  
  PROCEDURE Top(s: Stack): INTEGER;  
  PROCEDURE Pop(s: Stack): Stack;  
END Stacks.
```

- Exceptions: EmptyStack

Example: MIS for Stacks ADT (2)

- Axioms:

1. **Bottom is not a Push stack.**

$$\forall i : \text{INTEGER}, s : \text{Stack} . \text{Bottom} \neq \text{Push}(i, s)$$

2. **Push is one-to-one.**

$$\forall i_1, i_2 : \text{INTEGER}, s_1, s_2 : \text{Stack} .$$

$$\text{Push}(i_1, s_1) = \text{Push}(i_2, s_2) \Rightarrow (i_1 = i_2 \wedge s_1 = s_2)$$

3. **Induction axiom for stacks.**

$$\forall P : \text{Stack} \rightarrow \text{BOOLEAN} .$$

$$[P(\text{Bottom}) \wedge$$

$$\forall s : \text{Stack} . P(s) \Rightarrow \forall i : \text{INTEGER} . P(\text{Push}(i, s))]$$

$$\Rightarrow \forall s : \text{Stack} . P(s)$$

Example: MIS for Stacks ADT (3)

4. Top applied to a Push stack.

$$\forall i : \text{INTEGER}, s : \text{Stack} . \text{Top}(\text{Push}(i, s)) = i$$

5. Pop applied to a Push stack.

$$\forall i : \text{INTEGER}, s : \text{Stack} . \text{Pop}(\text{Push}(i, s)) = s$$

6. Bottom has no top.

$$\text{Top}(\text{Bottom}) \uparrow$$

[EmptyStack exception]

7. Bottom has no pop.

$$\text{Pop}(\text{Bottom}) \uparrow$$

[EmptyStack exception]

Note: This MIS has the form of an **axiomatic theory** (L, Γ) where

- L is the **language** defined by the interface of the MID
- Γ is the set of axioms of the MID

Example: Stacks ADT Module (1)

(*

Title: Stacks ADT

Interface:

```
INTERFACE Stacks;  
  TYPE Stack;  
  CONST Bottom: Stack;  
  PROCEDURE Push(i: INTEGER; s: Stack): Stack;  
  PROCEDURE Top(s: Stack): INTEGER;  
  PROCEDURE Pop(s: Stack): Stack;  
END Stacks.
```

*)

MODULE Stacks;

IMPORT Out;

Example: Stacks ADT Module (2)

(* Types *)

TYPE

Stack* = POINTER TO StackRec;

StackRec =
RECORD
 item: INTEGER;
 rest: Stack;
END;

(* Constants *)

VAR Bottom-: Stack; (* represents the empty stack *)

Example: Stacks ADT Module (3)

(* Exceptions: *)

```
PROCEDURE EmptyStackException();
BEGIN
  Out.String("Stacks.EmptyStackException: The stack is empty.");
  HALT(1)  (* Abort program *)
END EmptyStackException;
```

(* Local procedures *)

```
PROCEDURE Empty(s: Stack): BOOLEAN;
BEGIN
  RETURN s = Bottom
END Empty;
```

Example: Stacks ADT Module (4)

(* Interface procedures *)

```
PROCEDURE Push*(i: INTEGER; s: Stack): Stack;
  VAR t: Stack;
BEGIN
  NEW(t);
  t^.item := i;
  t^.rest := s;
  RETURN t
END Push;
```

```
PROCEDURE Top*(s: Stack): INTEGER;
BEGIN
  IF ~Empty(s) THEN
    RETURN s^.item
  ELSE
    EmptyStackException()
  END
END Top;
```

Example: Stacks ADT Module (5)

```
PROCEDURE Pop*(s: Stack): Stack;
BEGIN
  IF ~Empty(s) THEN
    RETURN s^.rest
  ELSE
    EmptyStackException()
  END
END Pop;

BEGIN
  Bottom := NIL    (* initializes Bottom *)
END Stacks.
```

Components of a Before/After MIS

- 1. Imported modules**
- 2. Interface**
 - Types
 - Constant names and types
 - Procedure names and types
- 3. Exceptions**
- 4. State constants** with value conditions
- 5. State variables** with initial values
- 6. Behavior rules**
 - Output rules
 - State transition rules
 - Exception rules

Example: Before/After MIS For Stack Data Structure (1)

- Imported modules: none required
- Interface:

```
INTERFACE Stack;  
  PROCEDURE Reset();  
  PROCEDURE MaxHeight(): INTEGER;  
  PROCEDURE Height(): INTEGER;  
  PROCEDURE Empty(): BOOLEAN;  
  PROCEDURE Full(): BOOLEAN;  
  PROCEDURE Push(i: INTEGER);  
  PROCEDURE Pop();  
  PROCEDURE Top(): INTEGER;  
END Stack.
```

Example: MIS for Stack (2)

- State constants:

max : INTEGER [0 ≤ max]

- State variables:

s : lists[INTEGER] [initially $s = \text{nil}$]

- Exceptions:

EmptyStack

FullStack

- Behavior rules:

Reset

Input	Output	Transition	Exception
		$s' = \text{nil}$	

Example: MIS for Stack (3)

MaxHeight

Input	Output	Transition	Exception
	max		

Height

Input	Output	Transition	Exception
	$ s $		

Empty

Input	Output	State	Exception
	$ s = 0$		

Full

Input	Output	State	Exception
	$ s = \text{max}$		

Example: MIS for Stack (4)

Push

Input	Output	Transition	Exception
$i : \text{INTEGER}$		$s' = \text{cons}(i, s)$	$\text{Full}() \Rightarrow \text{FullStack}$

Pop

Input	Output	Transition	Exception
		$s' = \text{tl}(s)$	$\text{Empty}() \Rightarrow \text{EmptyStack}$

Top

Input	Output	Transition	Exception
	$\text{hd}(s)$		$\text{Empty}() \Rightarrow \text{EmptyStack}$

Module Structure

- Simple structure:
 - All module interfaces are accessible to all module implementations
 - All modules are indivisible units
- Access structure: Module interfaces are only available to certain module implementations
- Submodule structure: Modules may be decomposed into submodules
 - Example: Modules may contain local modules
- Definitional extension structure:
 - Modules with state are only accessible to their definitional extensions
 - Definitional extensions do not have state and are widely accessible

References

1. D. Parnas, “On the criteria to be used in decomposing systems into modules”, in: D. Hoffman and D. Weiss, *Software Fundamentals*, Addison Wesley, 2001.
2. D. Parnas, P. Clements, and D. Weiss, “The modular structure of complex systems”, in: D. Hoffman and D. Weiss, *Software Fundamentals*, Addison Wesley, 2001.