
SE 2A04 Fall 2002

03 Software
Specification and Description

Instructor: W. M. Farmer

Revised: 08 November 2002

1



Descriptions of Engineering Products

• A description of a product is a model of the product

– Should include only certain key aspects of the product

– Should be easier to understand than the product itself

• Mathematics is used to make descriptions precise

• A variety of descriptions, instead of a single description,

is used to efficiently describe the different aspects of a

product

– There is never a complete description of a product

2



Specifications

• A specification describes the attributes required of a

product

• A product satisfies a specification if it possesses the

attributes described by the specification

• A specification serves three purposes:

– Blueprint for developing the product

– Basis for verifying the correctness of the product

– High-level description of the product

3



Actual Descriptions

• An (actual) description describes the actual attributes

of a product

• A constructive description describes how the product

is constructed from other products

– A program’s code is a constructive description

• A behavioral description describes how the product works

– Blackbox: describes the external (visible) behavior

– Whitebox: describes the internal (invisible) behavior

4



Specification vs. Description

• Both specifications and descriptions describe attributes,

but they are different in intent

– The same descriptive item may be interpreted as either

a specification or a description

• Specifications are often interpreted as abstract

descriptions

• Descriptions are often interpreted as concrete

specifications

5



Refinement

• Let S and S′ be specifications

• S′ is a refinement of S if every product that satisfies S′

also satisfies S

• The refinement method is a powerful design method in

which a specification S0 is to incrementally refined to a

specification Sn of a product that is readily implementable

6



Procedure Specification Methods

1. Input/output specification

2. Before/after specification

• Input/output specification is a special case

3. Trace specification

4. Pre- and postcondition specification

Note: Specifications methods 1–3 view procedures as

certain kinds of functions

7



Review of Functions

• f : A → B means f is a function that maps members of
A to members of B

• f can be viewed as a set of ordered pairs:

{(x, y) : A×B | y = f(x)} ⊆ A×B

• f may not be defined for all members of A

– The domain of f is the set dom(f) = {x : A | f(x) ↓}
– f is total if dom(f) = A

– f is partial if dom(f) ⊆ A

– f is strictly partial if dom(f) ⊂ A

• The function can be specified in various ways:

– Definitional specification: f = E

– Relational specification: (R,D)

– Axiomatic specification: A(f)
8



Partiality in Software Specifications

Specifications can be partial in two ways:

1. A specification may not fully specify an object or

operation

• What is not specified is considered to be implicitly

specified as “don’t care” and can thus be freely

implemented

2. A specification may state that the application of an

operation in certain states or on certain inputs is

undefined or illegal

• An undefined application is implemented by an

exception

9



Input/output Specifications

• Let I be a set of possible inputs, and O be a set of possible

outputs

• A procedure without side-effects can be viewed as a

function f : I → O that maps inputs to outputs

10



Definitional Specification

• A definition specifies a unique object

• So a definition of a function specifies a unique function:

– Syntax: f = E where E is an expression

– Semantics: f is the unique function denoted by E

• Example 1: Integer square function f : Z → Z

f = λx : Z . x ∗ x (or f(x) = x ∗ x)

• Example 2: Integer square root function g : Z → Z

g = λx : Z . I y : Z . 0 ≤ y ∧ y ∗ y = x

Notice that g is strictly partial

11



Relational Specification

• A relational specification is a pair (R,D) where:

1. R ⊆ I ×O

2. D ⊆ dom(R) = {x : I | ∃ y : O . R(x, y)} ⊆ I

• f : I → O satisfies (R,D) if:

1. ∀x : I . x ∈ dom(f) ⇒ R(x, f(x))

2. D ⊆ dom(f)

• Example 1: Integer square function f : Z → Z

R = {(x, y) ∈ Z×Z | y = x ∗ x}
D = Z

• Example 2: Integer square root function g : Z → Z

R = {(x, y) ∈ Z×Z | y ∗ y = x}
D = {x ∈ Z | ∃y : Z . y ∗ y = x} ⊆ {x : Z | 0 ≤ x}

12



Axiomatic Specification

• An axiomatic specification is a formula A(f):

– A(f) is an axiom for the behavior of f

• g : I → O satisfies A(f) if A(g) is true

• Example 1: Integer square function f : Z → Z

A(f) ⇔ ∀x : Z . f(x) = x ∗ x

• Example 2: Integer square root function g : Z → Z

A(f) ⇔ ∀x : Z . if(∃y : Z . y ∗ y = x,

f(x) ∗ f(x) = x,

f(x) ↑)

13



What is a State?

• A state of a machine is an abstract entity that can only
be defined indirectly

• A description of a state of a machine is a description of
all the information needed to predict the machine’s future
response to input from the external environment

• Physical machines have an infinite number of states, but
they can usually be viewed as if they had a finite number
of states

– Aspects of a state which are irrelevant to the behavior
of the machine (e.g., temperature and location) can
be ignored

– Transition states between stable states can also be
ignored

• Digital computers are design to behave as if they were
finite state machines

14



State Machines

• A state machine M consists of the following

components:

1. A fixed set S of states including an initial state

2. A fixed set I of inputs

3. A fixed set O of outputs

4. An output relation out ⊆ I × S ×O

5. A next state relation ns ⊆ I × S × S

• M is a finite state machine if S is finite

• M is deterministic if the relations are functions, i.e.,

out : I × S → O and ns : I × S → S

15



Computing Machines

• A computing machine can viewed as a finite state

machine:

– The machine can only be in one of finitely many

stable states

– An execution takes the machine through a

sequence of states

• A program, module, or procedure can be viewed as a

small computing machine, i.e., a finite state machine

– A state of the machine is the set of variables (data

structures) that the program, module, or procedure

can modify

16



Before/After Specifications

• Let I be a set of possible inputs, O be a set of possible

outputs, and S be a set of possible states

• A procedure (possibly with side-effects) can be viewed as

a function f : I × S → O × S that maps inputs and

before-states to outputs and after-states

• The function f can be represented as a pair (f1, f2) of

functions where:

f1 : I × S → O

f2 : I × S → S

• An input/output function is a special case of a before/after

function where the after-state is always the same as the

before-state

17



Before/After Specification Format

Components of a before/after procedure specification:

1. The name and type of the procedure

2. The exceptions that the procedure can raise

• Represented as predicates

3. State constants with value conditions

4. State variables with initial values

5. Behavior rules (preferably given in a tabular format):

• Output rules

• State transition rules

• Exception rules
18



Example 1:
Counted Integer Square Function

1. counted-int-square : Z → Z

2. Exceptions: none required

3. State constants: none

4. State variables: c : Z [initially c = 0]

5. Behavior rules:

Input Output State Exception
x : Z y : Z Transition

x ∈ Z y = x ∗ x c′ = c+ 1

19



Example 2:
Counted Integer Square Root Function

1. counted-int-sqrt : Z → Z

2. Exceptions: sqrt-complex, sqrt-irrational

3. State constants: none

4. State variables: c : Z [initially c = 0]

5. Behavior rules:

Input Output State Exception
x : Z y : Z Transition

x < 0 c′ = c+ 1 sqrt-complex
0 ≤ x ∧ c′ = c+ 1 sqrt-irrational
¬∃y : Z . y ∗ y = x
0 ≤ x ∧ 0 ≤ y ∧ c′ = c+ 1
∃y : Z . y ∗ y = x y ∗ y = x

20



Trace Specifications

• Let I be a set of possible inputs, O be a set of possible

outputs, S be a set of possible states, and S∗ be the set

of finite sequences of members of S

• A trace is an execution history expressed as a sequence

of states

– A finite trace is a member of S∗

• A procedure (possibly with side-effects) can be viewed as

a function f : I × S∗ → O × S∗ that maps inputs and

before-traces to outputs and after-traces

• The function f can be represented as a pair (f1, f2) of

functions where:

f1 : I × S∗ → O

f2 : I × S∗ → S∗

21



Pre- and Postconditions Specification

• A state is specified by a tuple X = (x1, . . . , xn) of variables

• A procedure is specified by:

1. A precondition ϕ(x1, . . . , xn) on the initial values of
the state variables

2. A postcondition ψ(x1, . . . , xn;x
′
1, . . . , x

′
n) on the initial

and final values of the state variables

• A procedure satisfies the specification if, for all states
X = (x1, . . . , xn), whenever

ϕ(x1, . . . , xn)

holds, the procedure is started in state X, and the
procedure terminates in state X ′ = (x′1, . . . , x

′
n), then

ψ(x1, . . . , xn;x
′
1, . . . , x

′
n)

holds.

22



Partial vs. Total Correctness

• A procedure P is partially correct with respect to a

pre- and postcondition specification S = (ϕ,ψ) if P

satisfies S

• A procedure P is totally correct with respect to a

pre- and postcondition specification S = (ϕ,ψ) if both:

– P satisfies S

– P terminates whenever it is started in a state for which

the precondition ϕ holds

23



Module Design Documents

• Module Guide

• For each module:

– Module Interface Specification (MIS)

– Module Internal Design (MID)

24



Module Guide

• The Module Guide lists all the modules of the software

product

• The following information is given for each module:

1. Module name

2. Module nickname (2 or 3 letters)

3. Service: Short informal description of what services

the module provides

4. Secret: Short informal description of what secret the

module hides

5. Expected changes: A short description of expected

implementation changes

25



Components of an
Axiomatic Input/Output MIS

1. Imported modules

2. Interface

• Types

• Constant names and types

• Procedure names and types

3. Exceptions

4. Axioms

26



Example: Axiomatic Input/Output MIS
For Stacks ADT (1)

• Imported modules: none required

• Interface:

INTERFACE Stacks;

TYPE Stack;

CONST Bottom: Stack;

PROCEDURE Push(i: INTEGER; s: Stack): Stack;

PROCEDURE Top(s: Stack): INTEGER;

PROCEDURE Pop(s: Stack): Stack;

END Stacks.

• Exceptions: EmptyStack

27



Example: MIS for Stacks ADT (2)

• Axioms:

1. Bottom is not a Push stack.

∀ i : INTEGER, s : Stack . Bottom 6= Push(i, s)

2. Push is one-to-one.

∀ i1, i2 : INTEGER, s1, s2 : Stack .

Push(i1, s1) = Push(i2, s2) ⇒ (i1 = i2 ∧ s1 = s2)

3. Induction axiom for stacks.

∀P : Stack→ BOOLEAN .

[P (Bottom) ∧
∀ s : Stack . P (s) ⇒ ∀ i : INTEGER . P (Push(i, s))]

⇒ ∀ s : Stack . P (s)

28



Example: MIS for Stacks ADT (3)

4. Top applied to a Push stack.
∀ i : INTEGER, s : Stack . Top(Push(i, s)) = i

5. Pop applied to a Push stack.
∀ i : INTEGER, s : Stack . Pop(Push(i, s)) = s

6. Bottom has no top.
Top(Bottom)↑
[EmptyStack exception]

7. Bottom has no pop.
Pop(Bottom)↑
[EmptyStack exception]

Note: This MIS has the form of an axiomatic theory
(L,Γ) where

– L is the language defined by the interface of the MID
– Γ is the set of axioms of the MID

29



Example: Stacks ADT Module (1)

(*

Title: Stacks ADT

Interface:

INTERFACE Stacks;
TYPE Stack;
CONST Bottom: Stack;
PROCEDURE Push(i: INTEGER; s: Stack): Stack;
PROCEDURE Top(s: Stack): INTEGER;
PROCEDURE Pop(s: Stack): Stack;

END Stacks.

*)

MODULE Stacks;

IMPORT Out;

30



Example: Stacks ADT Module (2)

(* Types *)

TYPE

Stack* = POINTER TO StackRec;

StackRec =
RECORD

item: INTEGER;
rest: Stack;

END;

(* Constants *)

VAR Bottom-: Stack; (* represents the empty stack *)

31



Example: Stacks ADT Module (3)

(* Exceptions: *)

PROCEDURE EmptyStackException();
BEGIN

Out.String("Stacks.EmptyStackException: The stack is empty.");
HALT(1) (* Abort program *)

END EmptyStackException;

(* Local procedures *)

PROCEDURE Empty(s: Stack): BOOLEAN;
BEGIN

RETURN s = Bottom
END Empty;

32



Example: Stacks ADT Module (4)

(* Interface procedures *)

PROCEDURE Push*(i: INTEGER; s: Stack): Stack;
VAR t: Stack;

BEGIN
NEW(t);
t^.item := i;
t^.rest := s;
RETURN t

END Push;

PROCEDURE Top*(s: Stack): INTEGER;
BEGIN

IF ~Empty(s) THEN
RETURN s^.item

ELSE
EmptyStackException()

END
END Top;

33



Example: Stacks ADT Module (5)

PROCEDURE Pop*(s: Stack): Stack;
BEGIN

IF ~Empty(s) THEN
RETURN s^.rest

ELSE
EmptyStackException()

END
END Pop;

BEGIN
Bottom := NIL (* initializes Bottom *)

END Stacks.

34



Components of a Before/After MIS

1. Imported modules

2. Interface

• Types

• Constant names and types

• Procedure names and types

3. Exceptions

4. State constants with value conditions

5. State variables with initial values

6. Behavior rules

• Output rules

• State transition rules

• Exception rules
35



Example: Before/After MIS

For Stack Data Structure (1)

• Imported modules: none required

• Interface:

INTERFACE Stack;

PROCEDURE Reset();

PROCEDURE MaxHeight(): INTEGER;

PROCEDURE Height(): INTEGER;

PROCEDURE Empty(): BOOLEAN;

PROCEDURE Full(): BOOLEAN;

PROCEDURE Push(i: INTEGER);

PROCEDURE Pop();

PROCEDURE Top(): INTEGER;

END Stack.

36



Example: MIS for Stack (2)

• State constants:

max : INTEGER [0 ≤ max]

• State variables:

s : lists[INTEGER] [initially s = nil]

• Exceptions:

EmptyStack

FullStack

• Behavior rules:

Reset

Input Output Transition Exception

s′ = nil

37



Example: MIS for Stack (3)

MaxHeight

Input Output Transition Exception

max

Height

Input Output Transition Exception

|s|

Empty

Input Output State Exception

|s| = 0

Full

Input Output State Exception

|s| = max

38



Example: MIS for Stack (4)

Push

Input Output Transition Exception

i : INTEGER s′ = cons(i, s) Full()⇒ FullStack

Pop

Input Output Transition Exception

s′ = tl(s) Empty()⇒ EmptyStack

Top

Input Output Transition Exception

hd(s) Empty()⇒ EmptyStack

39



Module Structure

• Simple structure:

– All module interfaces are accessible to all module
implementations

– All modules are indivisible units

• Access structure: Module interfaces are only available to
certain module implementations

• Submodule structure: Modules may be decomposed into
submodules

– Example: Modules may contain local modules

• Definitional extension structure:

– Modules with state are only accessible to their
definitional extensions

– Definitional extensions do not have state and are widely
accessible

40



References

1. D. Parnas, “On the criteria to be used in decomposing

systems into modules”, in: D. Hoffman and D. Weiss,

Software Fundamentals, Addison Wesley, 2001.

2. D. Parnas, P. Clements, and D. Weiss, “The modular

structure of complex systems”, in: D. Hoffman and D.

Weiss, Software Fundamentals, Addison Wesley, 2001.

41


