SE 2A04 Fall 2002

03 Software
Specification and Description

Instructor: W. M. Farmer

Revised: 08 November 2002

Descriptions of Engineering Products

e A description of a product is a model of the product

— Should include only certain key aspects of the product
— Should be easier to understand than the product itself

e Mathematics is used to make descriptions precise

e A variety of descriptions, instead of a single description,
IS used to efficiently describe the different aspects of a
product

— There is never a complete description of a product

Specifications

e A specification describes the attributes required of a
product

e A product satisfies a specification if it possesses the
attributes described by the specification

e A specification serves three purposes:

— Blueprint for developing the product
— Basis for verifying the correctness of the product
— High-level description of the product

Actual Descriptions

e An (actual) description describes the actual attributes
of a product

e A constructive description describes how the product
is constructed from other products

— A program’s code is a constructive description

e A behavioral description describes how the product works
— Blackbox: describes the external (visible) behavior
— Whitebox: describes the internal (invisible) behavior

Specification vs. Description

e Both specifications and descriptions describe attributes,
but they are different in intent

— The same descriptive item may be interpreted as either
a specification or a description

e Specifications are often interpreted as abstract
descriptions

e Descriptions are often interpreted as concrete
specifications

Refinement

e Let S and S’ be specifications

e S’ is a refinement of S if every product that satisfies S’
also satisfies S

e T he refinement method is a powerful design method in
which a specification Sg is to incrementally refined to a
specification S,, of a product that is readily implementable

Procedure Specification Methods

1. Input/output specification

2. Before/after specification

e Input/output specification is a special case

3. Trace specification
4. Pre- and postcondition specification

Note: Specifications methods 1-3 view procedures as
certain kinds of functions

Review of Functions

e f. A— B means f is a function that maps members of
A to members of B

e f can be viewed as a set of ordered pairs:
{(z,9) :AxB|y=f(z)} CAxB

e f may not be defined for all members of A
— The domain of f is the set dom(f) ={xz: A | f(zx) |}
— f is total if dom(f) = A
— f is partial if dom(f) C A
— f is strictly partial if dom(f) C A

e [he function can be specified in various ways:

— Definitional specification: f = F
— Relational specification: (R, D)
— AXxiomatic specification: A(f)

Partiality in Software Specifications
Specifications can be partial in two ways:

1. A specification may not fully specify an object or
operation

e \What is not specified is considered to be implicitly
specified as ‘‘don’t care’” and can thus be freely
implemented

2. A specification may state that the application of an
operation in certain states or on certain inputs is
undefined or illegal

e An undefined application is implemented by an
exception

Input/output Specifications

e Let I be aset of possible inputs, and O be a set of possible
outputs

e A procedure without side-effects can be viewed as a
function f: I — O that maps inputs to outputs

10

Definitional Specification

e A definition specifies a unique object

e SO a definition of a function specifies a unique function:

— Syntax: f = E where E is an expression
— Semantics: f is the unique function denoted by E

e Example 1: Integer square function f:Z — Z
f=Xx:Z.xzxx (or f(x) =xx*x)

e Example 2: Integer square root function g: Z — Z
g=Xx . Z.Ily. Z. 0O<yAyxy==x
Notice that g is strictly partial

11

Relational Specification

e A relational specification is a pair (R, D) where:

1. RCIxO
2. DCdom(R)={x:1|3y:0.R(zx,y)} C I

e f:I— O satisfies (R, D) if:

1. Vz:I.xzedom(f) = R(x, f(x))
2. D Cdom(f)

e Example 1: Integer square function f:Z — Z

R={(z,y) €ZXZ |y=xxx}
D=Z

e Example 2: Integer square root function g: Z — Z

R={(z,y) €ZXZ | y*xy=ux}
D={xeZ|y:Z. yxy=z}C{zx:Z|0<zx}
12

Axiomatic Specification

e An axiomatic specification is a formula A(f):

— A(f) is an axiom for the behavior of f

e g:. I — O satisfies A(f) if A(g) is true

e Example 1: Integer square function f:Z — Z
A(f) ©Vx . Z. f(x) =x*x

e Example 2: Integer square root function g: Z — Z
A(f) Vo Z .if(y:Z .y*xy = =,

f(@)* f(z) ==,
f(x) 1)

13

What is a State?

e A state of a machine is an abstract entity that can only
be defined indirectly

e A description of a state of a machine is a description of
all the information needed to predict the machine’s future
response to input from the external environment

e Physical machines have an infinite number of states, but
they can usually be viewed as if they had a finite number
of states

— Aspects of a state which are irrelevant to the behavior
of the machine (e.g., temperature and location) can
be ignored

— Transition states between stable states can also be
ignored

e Digital computers are design to behave as if they were
finite state machines

14

State Machines

e A state machine M consists of the following
components:

1. A fixed set S of states including an initial state
2. A fixed set I of inputs

3. A fixed set O of outputs

4. An output relation outC I xS x O

5. A next state relation nsC I xS x S

e M is a finite state machine if S is finite

e M is deterministic if the relations are functions, i.e.,
out: I xS —0andns: I xS —S

15

Computing Machines

e A computing machine can viewed as a finite state
machine:

— The machine can only be in one of finitely many
stable states

— An execution takes the machine through a
sequence of states

e A program, module, or procedure can be viewed as a
small computing machine, i.e., a finite state machine

— A state of the machine is the set of variables (data
structures) that the program, module, or procedure
can modify

16

Before/After Specifications

e Let I be a set of possible inputs, O be a set of possible
outputs, and S be a set of possible states

e A procedure (possibly with side-effects) can be viewed as
a function f : I xS — O x S that maps inputs and
before-states to outputs and after-states

e The function f can be represented as a pair (f1, fo) of
functions where:
fi:IxS—0
fo:IxS—S

e An input/output function is a special case of a before/after
function where the after-state is always the same as the
before-state

17

Before/After Specification Format
Components of a before/after procedure specification:
1. The name and type of the procedure

2. The exceptions that the procedure can raise

e Represented as predicates
3. State constants with value conditions
4. State variables with initial values

5. Behavior rules (preferably given in a tabular format):

e Output rules
e State transition rules

e EXxception rules
18

Example 1:
Counted Integer Square Function

1. counted-int-square : Z — Z

2. Exceptions: none required

3. State constants: none

4. State variables: c¢: Z [initially ¢ = 0]

5. Behavior rules:

Input | Output | State EXxception
x.Z |y:.”Z Transition
re”Z |y=zxx|d=c+1

Example 2:
Counted Integer Square Root Function

1. counted-int-sqrt: Z — Z

2. Exceptions: sgrt-complex, sqrt-irrational
3. State constants: none

4. State variables: c¢: Z [initially ¢ = 0]

5. Behavior rules:

Input Output | State Exception

x . L y.Z Transition

x <0 d=c+1 sqrt-complex
0<zA d=c+1 sqgrt-irrational
—dy Z.yxy==x

O<xA O<yA |d=c+1

dy Z . yxy=x |yxy==x

20

Trace Specifications

e Let] be a set of possible inputs, O be a set of possible
outputs, S be a set of possible states, and S* be the set
of finite sequences of members of S

e A trace is an execution history expressed as a sequence
of states

— A finite trace is a member of S*

e A procedure (possibly with side-effects) can be viewed as
a function f : I x S* - O x S§* that maps inputs and
before-traces to outputs and after-traces

e The function f can be represented as a pair (fq1, fo) of
functions where:

fi:Ix858"—0O

fQIIXS*—>S*
21

Pre- and Postconditions Specification

e A state is specified by a tuple X = (z1,...,zn) Of variables

e A procedure is specified by:

1. A precondition ¢(x1,...,zn) on the initial values of
the state variables
2. A postcondition ¢(z1,...,zn; 2Y,...,z)) on the initial

and final values of the state variables

e A procedure satisfies the specification if, for all states

X = (x1,...,zn), Whenever
o(x1,...,2n)
holds, the procedure is started in state X, and the
procedure terminates in state X’ = (z,...,},), then
(X1, ..., Tn, T, ..., x))
holds.

22

Partial vs. Total Correctness

e A procedure P is partially correct with respect to a
pre- and postcondition specification S = (p,) if P
satisfies S

e A procedure P is totally correct with respect to a
pre- and postcondition specification S = (¢,) if both:

— P satisfies S

— P terminates whenever it is started in a state for which
the precondition ¢ holds

23

Module Design Documents

e Module Guide

e For each module:
— Module Interface Specification (MIS)

— Module Internal Design (MID)

24

Module Guide

e [he Module Guide lists all the modules of the software
product

e [he following information is given for each module:

1.
2.
3.

Module name
Module nickname (2 or 3 letters)

Service: Short informal description of what services
the module provides

. Secret: Short informal description of what secret the

module hides

. Expected changes: A short description of expected

implementation changes

25

Components of an
Axiomatic Input/Output MIS

1. Imported modules

2. Interface

e [ypes
e Constant names and types
e Procedure names and types

3. Exceptions

4. AxXioms

26

Example: Axiomatic Input/Output MIS
For Stacks ADT (1)

e Imported modules: none required

e Interface:

INTERFACE Stacks;
TYPE Stack;
CONST Bottom: Stack;
PROCEDURE Push(i: INTEGER; s: Stack): Stack;
PROCEDURE Top(s: Stack): INTEGER;
PROCEDURE Pop(s: Stack): Stack;
END Stacks.

e EXxceptions: EmptyStack

27

Example: MIS for Stacks ADT (2)

e AXioms:

1. Bottom is not a Push stack.
Vi : INTEGER, s : Stack . Bottom 7 Push(i, s)

2. Push is one-to-one.
V41,15 . INTEGER, s1, s> . Stack .
Push(iq,s1) = Push(in,55) = (i1 = io A s1 = so)

3. Induction axiom for stacks.
VY P : Stack — BOOLEAN .
[P(Bottom) A
Vs :Stack . P(s) = Vi : INTEGER . P(Push(s, s))]
— Vs : Stack . P(s)

28

Example: MIS for Stacks ADT (3)

4. Top applied to a Push stack.
Vi : INTEGER, s : Stack . Top(Push(i,s)) =i

5. Pop applied to a Push stack.
Vi : INTEGER, s : Stack . Pop(Push(i,s)) = s

6. Bottom has no top.
Top(Bottom) |
[EmptyStack exception]

7. Bottom has no pop.
Pop(Bottom) |
[EmptyStack exception]

Note: This MIS has the form of an axiomatic theory
(L,T") where

— L is the language defined by the interface of the MID

— [is the set of axioms of the MID
29

Example: Stacks ADT Module (1)

(*
Title: Stacks ADT
Interface:

INTERFACE Stacks;
TYPE Stack;
CONST Bottom: Stack;
PROCEDURE Push(i: INTEGER; s: Stack): Stack;
PROCEDURE Top(s: Stack): INTEGER;
PROCEDURE Pop(s: Stack): Stack;
END Stacks.

*)
MODULE Stacks;

IMPORT Out;

30

Example: Stacks ADT Module (2)

(x Types *)
TYPE

Stack*x = POINTER TO StackRec;

StackRec =
RECORD
item: INTEGER;
rest: Stack;
END;

(*x Constants *)

VAR Bottom-: Stack; (* represents the empty stack *)

31

Example: Stacks ADT Module (3)

(x Exceptions: *)

PROCEDURE EmptyStackException() ;

BEGIN
Out.String("Stacks.EmptyStackException: The stack is empty.");
HALT(1) (* Abort program *)

END EmptyStackException;

(* Local procedures *)

PROCEDURE Empty(s: Stack): BOOLEAN;
BEGIN

RETURN s = Bottom
END Empty;

32

Example: Stacks ADT Module (4)

(* Interface procedures x*)

PROCEDURE Push#*(i: INTEGER; s: Stack): Stack;
VAR t: Stack;
BEGIN
NEW(t) ;
t”.item := 1i;
t”".rest := s;
RETURN t
END Push;

PROCEDURE Top*(s: Stack): INTEGER;
BEGIN
IF ~“Empty(s) THEN
RETURN s~ .item
ELSE
EmptyStackException()
END
END Top;

Example: Stacks ADT Module (5)

PROCEDURE Pop*(s: Stack): Stack;
BEGIN
IF “Empty(s) THEN
RETURN s~ .rest
ELSE
EmptyStackException()
END
END Pop;

BEGIN
Bottom := NIL (* initializes Bottom *)
END Stacks.

34

Components of a Before/After MIS

1

2.

. Imported modules

Interface

e [ypes
e Constant names and types
e Procedure names and types

. Exceptions

. State constants with value conditions

. State variables with initial values

. Behavior rules

e Output rules
e State transition rules
e EXxception rules

35

Example: Before/After MIS
For Stack Data Structure (1)

e Imported modules: none required

e Interface:

INTERFACE Stack;
PROCEDURE Reset();
PROCEDURE MaxHeight(): INTEGER;
PROCEDURE Height(): INTEGER;
PROCEDURE Empty(): BOOLEAN;
PROCEDURE Full(): BOOLEAN;
PROCEDURE Push(i: INTEGER);
PROCEDURE Pop() ;
PROCEDURE Top(): INTEGER;

END Stack.

Example: MIS for Stack (2)

e State constants:

max : INTEGER [0 < max]

e State variables:

s : lists[INTEGER]

e EXceptions:

EmptyStack
FullStack

e Behavior rules:

Reset

[initially s = nil]

Input

Output

Transition

Exception

s’ = nil

37

Example: MIS for Stack (3)

MaxHeight

Input | Output | Transition | Exception
max

Height

Input | Output | Transition | Exception
||

Empty

Input | Output | State | Exception
|s| =

Full

Input | Output | State | Exception

|s| = max

38

Example: MIS for Stack (4)

Push

Input Output | Transition Exception

i : INTEGER s’ = cons(¢,s) | Full() = FullStack
Pop

Input | Output | Transition | Exception
s’ = tl(s) Empty () = EmptyStack

Top

Input | Output | Transition | Exception
hd(s) Empty () = EmptyStack

39

Module Structure

e Simple structure:

— AIll module interfaces are accessible to all module
implementations
— All modules are indivisible units

e Access structure: Module interfaces are only available to
certain module implementations

e Submodule structure: Modules may be decomposed into
submodules

— Example: Modules may contain local modules

e Definitional extension structure:

— Modules with state are only accessible to their
definitional extensions
— Definitional extensions do not have state and are widely

accessible
40

References

1. D. Parnas, “On the criteria to be used in decomposing
systems into modules”, in: D. Hoffman and D. Weiss,

Software Fundamentals, Addison Wesley, 2001.

2. D. Parnas, P. Clements, and D. Weiss, ‘“The modular
structure of complex systems’, in: D. Hoffman and D.
Weiss, Software Fundamentals, Addison Wesley, 2001.

41

