SE 2A04 Fall 2002

04 Verification and Analysis

Instructor: W. M. Farmer

Revised: 18 October 2002

T he Problem

e \What behavior does the software product exhibit?
Is the behavior correct?
Is the behavior acceptable?

e Measures of software quality:

— Correctness: To what extend does the product satisfy
its requirements specification?

— Reliability: How probable is correct behavior?
— Trustworthiness: How probable is critical failure?

e Forms of verification and analysis:
— Inspection
— Testing
— Mathematical verification

Correctness

e Full correctness is very difficult to achieve and even more
difficult to demonstrate

e Some lack of correctness must usually be accepted

— It can be possible to achieve and prove full correctness
for some simple software products

— For most software products, full correctness is an
unaffordable dream

e Full correctness is an important goal but rarely necessary

e Inspection, testing, and mathematical verification can
show incorrectness, but mathematical verification is needed
to show correctness

Reliability

e Reliability is a useful measure when:

— All errors are considered equally important
— There are no critical failures

— The operating conditions are predictable
— We want to compare risks

e [esting is most useful for measuring reliability

Trustworthiness

e Some systems have critical requirements that must be
fully satisfied by the software product

— It can be useful to rank the requirements by how
critical they are

e Critical requirements may concern such things as:

— Safety to users and the environment
— Information security

— High cost of failure

e Inspection and mathematical verification are useful for
measuring trustworthiness, but testing is not

e Unreliable products are often accepted, but

untrustworthy products with critical requirements
should never be accepted

Product Inspection

e [he full product, both documentation and code, should
be inspected

e [he inspection should be systematic

— QGuided by checklists and questionnaires

e [he inspection should be an active process

— Inspectors use the product documents
— They document their analysis and provide specifics

— They produce their own product descriptions from the
code which they compare with the product
specifications

e [he inspection should be performed by a small team that
includes people with different kinds of expertise

Software Testing

e Testing can show instances of incorrectness, but it is
usually not practical for demonstrating correctness and

trustworthiness

— There are often an unbounded number of possible
inputs and environmental configurations

— Only what is executable (code but usually not
specifications) can be tested

e Positive testing results are not, by themselves, an
indication of software quality

e [esting can be used to assess reliability

e [T he smallest components and the lowest levels of the
uses hierarchy should be tested first

— Integration should be done only after the components
have been fully tested

Kinds of Code Testing

1. Blackbox testing

e Based on the specification alone

e [est cases chosen without looking at the code
e Can be reused with a new implementation

e Can be done independently of the designer

2. Clearbox testing

e Based on the code
e [est cases chosen by looking at code
e [ests the implementation mechanism

3. Greybox testing

e Intended for modules with internal data structures

e [est cases chosen with respect to the internal data
structures

e Gives better coverage than blackbox testing

Kinds of Test Case Selection

1. Planned: Test cases selected to cover the behavior of
the code
e Based on specification (blackbox)
e Based on code (clearbox)
e Based on internal data structures (graybox)

2. Wild random: Test cases selected using a uniform
random distribution

e Can find cases nobody thought of
e Can violate assumptions vielding spurious results

3. Statistical random: Test cases selected using an
operational profile

e Provides meaningful reliability figures
e Only as good as the operational profile

General Recommendations (Parnas)

1. Test all possible paths through the program

e SO every possible statement is tested at least once

2. Test all data states
3. Test all degenerate data states

4. Test extreme cases

e [ry very large numbers
e ITry very small numbers

5. Test erroneous cases

6. Think of cases that nobody thinks of

10

Mathematical Verification

e Main idea: Use the mathematics process to analyze the
behavior of a software product

Most effective for high-level design
Requires significant human expertise
Requires effective machine support
Can be very expensive

e [he mathematics process consists of three activities:

1.

Model creation: Create mathematical models that
represent mathematical aspects of the world

. Model exploration: EXxplore the models by stating

and proving conjectures and by performing calculations
Model connection. Connect the models to one
another so that results obtained in one model can be

used in other models
11

Two Approaches

1. Informal but rigorous: Models are expressed using a

natural language and are explored by informal conjecture
proving and computation

e All the work is done by humans
e Usually not feasible for problems with many details

2. Formal and mechanized: Models are expressed and
explored using a mechanized mathematics system like
a theorem proving system or computer algebra system

e A major portion of the work is done by machine

In most applications, the mathematical verification will be a
mixture of these two approaches

12

Application to Software

e Problem: Does an implementation I satisfy a
specification S7

e First solution:

Choose an appropriate axiomatic theory T in an
appropriate background logic L

Formalize I asaterm [in T
Formalize S as a unary predicate S
Prove in L that S(I) is a theorem of T

e Second solution:

Choose an appropriate background logic L
Formalize I as a theory 717 in L

Formalize S as a theory Tg in L

Show that there is an interpretation of Tg in 17}

13

Final Comments

e Verification and analysis should be done at all stages in

the development of a software product—the earlier the
better

e Inspection, testing, and mathematical verification
complement each other

— Inspection is good for finding things that are missing
in the software product and in its documentation

— Testing is good for finding low-level errors, especially
coding errors

— Mathematical verification is good for finding high-level
errors, especially design errors

e [he same documentation should be used for inspection,
testing, and mathematical verification

14

References

1. D. Parnas and D. Weiss, “Active design reviews:
principles and practices”, in: D. Hoffman and D. Weiss,
Software Fundamentals, Addison Wesley, 2001.

2. D. Parnas, ‘Inspection of safety-critical software using
program-function tables”, in: D. Hoffman and D. Weiss,
Software Fundamentals, Addison Wesley, 2001.

15

