SE 2A04 Fall 2002

05 Software Development

Instructor: W. M. Farmer

Revised: 24 October 2002

Software Development Process

e A rational development process is needed to produce
quality software

e Any proposed rational process is necessarily an
idealization

— Humans inevitably make errors

— Communication between humans is imperfect
— Many things are not understood at the start

— Supporting technology always has limitations

Software Presentation

e Every software product should include documentation that
presents the product to clients, reviewers, users, and
maintainers

e It is useful to produce documentation that makes it
appear as if the software product were developed by a
rational process

— Mathematicians have long followed this approach in
presenting their results

See D. Parnas, “A rational design process: how and why to
fake it”, in: D. Hoffman and D. Weiss, Software Fundamen-
tals, Addison Wesley, 2001.

Development Activities

1. Investigation and specification of the requirements for
the desired product

2. Design of a product that satisfies the requirements
3. Implementation of a product according to the design

4. Verification and analysis of the requirements, design,
and implementation

5. Maintenance of the product (including the requirements
and design documents)

1. Requirements

e \What is the problem that needs to be solved?
What are the product requirements that need to be
satisfied?

e Output: Requirements Specification

— Functional requirements
— Requirements imposed by the environment

— Other requirements (e.g., cost, delivery date, style
considerations, performance)

e T he Requirements Specification should include everything
needed to design the product—no more, no less

— Any design that satisfies the requirements should be
acceptable

2. Design

e How will the problem be solved?
How will the product requirements be satisfied?

e Output: Design Document

— Includes a module guide that describes how the
design is decomposed into modules

— Includes a module interface specification (MIS) and
module internal design (MID) for each module of
the design

e [he Design Document should include everything needed
to implement the product—no more, no less

— Any implementation that satisfies the design should
be acceptable

3. Implementation

e \What is a solution to the problem?
What is an executable implementation of the design?

e Outputs:

— Source Code (with comments)
— Product Description

— Installation Instructions

— User Manual

4. Verification and Analysis

e \What behavior does the product exhibit?
Is the behavior correct?

e Forms of verification and analysis (outputs):

— Inspection (Inspection Reports)
— Testing (Test Data)
— Mathematical verification (Formal Mathematics)

5. Maintenance

e What needs to be maintained??
How will it be maintained?

e Outputs:

— Documentation and Software Repository
— Maintenance Plan
— Maintenance Records

e [he Repository should be maintained using a version
control system such as CVS and should contain all
previous versions of the documentation and software

Software “Life Cycle” Models

e \Waterfall

e Refinement
e Incremental
e Spiral

e Prototyping

Documentation

e Good documentation is an essential part of good design

— Documentation is to software engineering what
medical records are to medicine

— Documentation is usually not taken seriously by
software developers, reviewers, and maintainers

e Like other kinds of engineering documentation, software
documentation must be based on mathematics and logic

— Concepts must be as clear and simple as possible
— Notation must be both precise and concise

11

Documentation Recommendations
1. Design the documentation with great care

2. Use the same set of documents for the entire process
3. Integrate the documents with each other

4. Make the documents:

(a) Accurate

(b) Consistent

(c) Easy to navigate
(d) Easy to review
(e) Easy to modify

5. Keep the documentation up-to-date and keep a record of

all changes
12

